{"title":"基于自适应层次优化马群BiLSTM融合网络的MRI图像自动多级脑肿瘤分类。","authors":"T Thanya, T Jeslin","doi":"10.1007/s12539-025-00708-4","DOIUrl":null,"url":null,"abstract":"<p><p>Brain tumor classification using Magnetic Resonance Imaging (MRI) images is an important and emerging field of medical imaging and artificial intelligence in the current world. With advancements in technology, particularly in deep learning and machine learning, researchers and clinicians are leveraging these tools to create complex models that, using MRI data, can reliably detect and classify tumors in the brain. However, it has a number of drawbacks, including the intricacy of tumor types and grades, intensity variations in MRI data and tumors varying in severity. This paper proposes a Multi-Grade Hierarchical Classification Network Model (MGHCN) for the hierarchical classification of tumor grades in MRI images. The model's distinctive feature lies in its ability to categorize tumors into multiple grades, thereby capturing the hierarchical nature of tumor severity. To address variations in intensity levels across different MRI samples, an Improved Adaptive Intensity Normalization (IAIN) pre-processing step is employed. This step standardizes intensity values, effectively mitigating the impact of intensity variations and ensuring more consistent analyses. The model renders utilization of the Dual Tree Complex Wavelet Transform with Enhanced Trigonometric Features (DTCWT-ETF) for efficient feature extraction. DTCWT-ETF captures both spatial and frequency characteristics, allowing the model to distinguish between different tumor types more effectively. In the classification stage, the framework introduces the Adaptive Hierarchical Optimized Horse Herd BiLSTM Fusion Network (AHOHH-BiLSTM). This multi-grade classification model is designed with a comprehensive architecture, including distinct layers that enhance the learning process and adaptively refine parameters. The purpose of this study is to improve the precision of distinguishing different grades of tumors in MRI images. To evaluate the proposed MGHCN framework, a set of evaluation metrics is incorporated which includes precision, recall, and the F1-score. The structure employs BraTS Challenge 2021, Br35H, and BraTS Challenge 2023 datasets, a significant combination that ensures comprehensive training and evaluation. The MGHCN framework aims to enhance brain tumor classification in MRI images by utilizing these datasets along with a comprehensive set of evaluation metrics, providing a more thorough and sophisticated understanding of its capabilities and performance.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Multi-grade Brain Tumor Classification Using Adaptive Hierarchical Optimized Horse Herd BiLSTM Fusion Network in MRI Images.\",\"authors\":\"T Thanya, T Jeslin\",\"doi\":\"10.1007/s12539-025-00708-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brain tumor classification using Magnetic Resonance Imaging (MRI) images is an important and emerging field of medical imaging and artificial intelligence in the current world. With advancements in technology, particularly in deep learning and machine learning, researchers and clinicians are leveraging these tools to create complex models that, using MRI data, can reliably detect and classify tumors in the brain. However, it has a number of drawbacks, including the intricacy of tumor types and grades, intensity variations in MRI data and tumors varying in severity. This paper proposes a Multi-Grade Hierarchical Classification Network Model (MGHCN) for the hierarchical classification of tumor grades in MRI images. The model's distinctive feature lies in its ability to categorize tumors into multiple grades, thereby capturing the hierarchical nature of tumor severity. To address variations in intensity levels across different MRI samples, an Improved Adaptive Intensity Normalization (IAIN) pre-processing step is employed. This step standardizes intensity values, effectively mitigating the impact of intensity variations and ensuring more consistent analyses. The model renders utilization of the Dual Tree Complex Wavelet Transform with Enhanced Trigonometric Features (DTCWT-ETF) for efficient feature extraction. DTCWT-ETF captures both spatial and frequency characteristics, allowing the model to distinguish between different tumor types more effectively. In the classification stage, the framework introduces the Adaptive Hierarchical Optimized Horse Herd BiLSTM Fusion Network (AHOHH-BiLSTM). This multi-grade classification model is designed with a comprehensive architecture, including distinct layers that enhance the learning process and adaptively refine parameters. The purpose of this study is to improve the precision of distinguishing different grades of tumors in MRI images. To evaluate the proposed MGHCN framework, a set of evaluation metrics is incorporated which includes precision, recall, and the F1-score. The structure employs BraTS Challenge 2021, Br35H, and BraTS Challenge 2023 datasets, a significant combination that ensures comprehensive training and evaluation. The MGHCN framework aims to enhance brain tumor classification in MRI images by utilizing these datasets along with a comprehensive set of evaluation metrics, providing a more thorough and sophisticated understanding of its capabilities and performance.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-025-00708-4\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00708-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Automated Multi-grade Brain Tumor Classification Using Adaptive Hierarchical Optimized Horse Herd BiLSTM Fusion Network in MRI Images.
Brain tumor classification using Magnetic Resonance Imaging (MRI) images is an important and emerging field of medical imaging and artificial intelligence in the current world. With advancements in technology, particularly in deep learning and machine learning, researchers and clinicians are leveraging these tools to create complex models that, using MRI data, can reliably detect and classify tumors in the brain. However, it has a number of drawbacks, including the intricacy of tumor types and grades, intensity variations in MRI data and tumors varying in severity. This paper proposes a Multi-Grade Hierarchical Classification Network Model (MGHCN) for the hierarchical classification of tumor grades in MRI images. The model's distinctive feature lies in its ability to categorize tumors into multiple grades, thereby capturing the hierarchical nature of tumor severity. To address variations in intensity levels across different MRI samples, an Improved Adaptive Intensity Normalization (IAIN) pre-processing step is employed. This step standardizes intensity values, effectively mitigating the impact of intensity variations and ensuring more consistent analyses. The model renders utilization of the Dual Tree Complex Wavelet Transform with Enhanced Trigonometric Features (DTCWT-ETF) for efficient feature extraction. DTCWT-ETF captures both spatial and frequency characteristics, allowing the model to distinguish between different tumor types more effectively. In the classification stage, the framework introduces the Adaptive Hierarchical Optimized Horse Herd BiLSTM Fusion Network (AHOHH-BiLSTM). This multi-grade classification model is designed with a comprehensive architecture, including distinct layers that enhance the learning process and adaptively refine parameters. The purpose of this study is to improve the precision of distinguishing different grades of tumors in MRI images. To evaluate the proposed MGHCN framework, a set of evaluation metrics is incorporated which includes precision, recall, and the F1-score. The structure employs BraTS Challenge 2021, Br35H, and BraTS Challenge 2023 datasets, a significant combination that ensures comprehensive training and evaluation. The MGHCN framework aims to enhance brain tumor classification in MRI images by utilizing these datasets along with a comprehensive set of evaluation metrics, providing a more thorough and sophisticated understanding of its capabilities and performance.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.