基于多尺度图神经网络的颅脑肿瘤自动分类与分级研究

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Somya Srivastava, Parita Jain, Sanjay Kr Pandey, Gaurav Dubey, Nripendra Narayan Das
{"title":"基于多尺度图神经网络的颅脑肿瘤自动分类与分级研究","authors":"Somya Srivastava, Parita Jain, Sanjay Kr Pandey, Gaurav Dubey, Nripendra Narayan Das","doi":"10.1007/s12539-025-00718-2","DOIUrl":null,"url":null,"abstract":"<p><p>The medical field uses Magnetic Resonance Imaging (MRI) as an essential diagnostic tool which provides doctors non-invasive images of brain structures and pathological conditions. Brain tumor detection stands as a vital application that needs specific and effective approaches for both medical diagnosis and treatment procedures. The challenges from manual examination of MRI scans stem from inconsistent tumor features including heterogeneity and irregular dimensions which results in inaccurate assessments of tumor size. To address these challenges, this paper proposes an Automated Classification and Grading Diagnosis Model (ACGDM) using MRI images. Unlike conventional methods, ACGDM introduces a Multi-Scale Graph Neural Network (MSGNN), which dynamically captures hierarchical and multi-scale dependencies in MRI data, enabling more accurate feature representation and contextual analysis. Additionally, the Spatio-Temporal Transformer Attention Mechanism (STTAM) effectively models both spatial MRI patterns and temporal evolution by incorporating cross-frame dependencies, enhancing the model's sensitivity to subtle disease progression. By analyzing multi-modal MRI sequences, ACGDM dynamically adjusts its focus across spatial and temporal dimensions, enabling precise identification of salient features. Simulations are conducted using Python and standard libraries to evaluate the model on the BRATS 2018, 2019, 2020 datasets and the Br235H dataset, encompassing diverse MRI scans with expert annotations. Extensive experimentation demonstrates 99.8% accuracy in detecting various tumor types, showcasing its potential to revolutionize diagnostic practices and improve patient outcomes.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Brain Tumor Classification and Grading Using Multi-scale Graph Neural Network with Spatio-Temporal Transformer Attention Through MRI Scans.\",\"authors\":\"Somya Srivastava, Parita Jain, Sanjay Kr Pandey, Gaurav Dubey, Nripendra Narayan Das\",\"doi\":\"10.1007/s12539-025-00718-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The medical field uses Magnetic Resonance Imaging (MRI) as an essential diagnostic tool which provides doctors non-invasive images of brain structures and pathological conditions. Brain tumor detection stands as a vital application that needs specific and effective approaches for both medical diagnosis and treatment procedures. The challenges from manual examination of MRI scans stem from inconsistent tumor features including heterogeneity and irregular dimensions which results in inaccurate assessments of tumor size. To address these challenges, this paper proposes an Automated Classification and Grading Diagnosis Model (ACGDM) using MRI images. Unlike conventional methods, ACGDM introduces a Multi-Scale Graph Neural Network (MSGNN), which dynamically captures hierarchical and multi-scale dependencies in MRI data, enabling more accurate feature representation and contextual analysis. Additionally, the Spatio-Temporal Transformer Attention Mechanism (STTAM) effectively models both spatial MRI patterns and temporal evolution by incorporating cross-frame dependencies, enhancing the model's sensitivity to subtle disease progression. By analyzing multi-modal MRI sequences, ACGDM dynamically adjusts its focus across spatial and temporal dimensions, enabling precise identification of salient features. Simulations are conducted using Python and standard libraries to evaluate the model on the BRATS 2018, 2019, 2020 datasets and the Br235H dataset, encompassing diverse MRI scans with expert annotations. Extensive experimentation demonstrates 99.8% accuracy in detecting various tumor types, showcasing its potential to revolutionize diagnostic practices and improve patient outcomes.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-025-00718-2\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00718-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

医学领域使用磁共振成像(MRI)作为必不可少的诊断工具,为医生提供大脑结构和病理状况的非侵入性图像。脑肿瘤检测是一项重要的应用,需要具体和有效的医疗诊断和治疗方法。人工检查MRI扫描的挑战源于不一致的肿瘤特征,包括异质性和不规则的尺寸,导致肿瘤大小的不准确评估。为了解决这些挑战,本文提出了一种使用MRI图像的自动分类和分级诊断模型(ACGDM)。与传统方法不同,ACGDM引入了一个多尺度图神经网络(MSGNN),它可以动态捕获MRI数据中的分层和多尺度依赖关系,从而实现更准确的特征表示和上下文分析。此外,时空转换注意机制(STTAM)通过整合跨帧依赖关系,有效地模拟了MRI空间模式和时间演变,增强了模型对细微疾病进展的敏感性。通过分析多模态MRI序列,ACGDM在空间和时间维度上动态调整其焦点,从而精确识别显著特征。使用Python和标准库进行模拟,以评估BRATS 2018、2019、2020数据集和Br235H数据集上的模型,包括不同的MRI扫描和专家注释。广泛的实验表明,检测各种肿瘤类型的准确率为99.8%,显示了其革命性的诊断实践和改善患者预后的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Brain Tumor Classification and Grading Using Multi-scale Graph Neural Network with Spatio-Temporal Transformer Attention Through MRI Scans.

The medical field uses Magnetic Resonance Imaging (MRI) as an essential diagnostic tool which provides doctors non-invasive images of brain structures and pathological conditions. Brain tumor detection stands as a vital application that needs specific and effective approaches for both medical diagnosis and treatment procedures. The challenges from manual examination of MRI scans stem from inconsistent tumor features including heterogeneity and irregular dimensions which results in inaccurate assessments of tumor size. To address these challenges, this paper proposes an Automated Classification and Grading Diagnosis Model (ACGDM) using MRI images. Unlike conventional methods, ACGDM introduces a Multi-Scale Graph Neural Network (MSGNN), which dynamically captures hierarchical and multi-scale dependencies in MRI data, enabling more accurate feature representation and contextual analysis. Additionally, the Spatio-Temporal Transformer Attention Mechanism (STTAM) effectively models both spatial MRI patterns and temporal evolution by incorporating cross-frame dependencies, enhancing the model's sensitivity to subtle disease progression. By analyzing multi-modal MRI sequences, ACGDM dynamically adjusts its focus across spatial and temporal dimensions, enabling precise identification of salient features. Simulations are conducted using Python and standard libraries to evaluate the model on the BRATS 2018, 2019, 2020 datasets and the Br235H dataset, encompassing diverse MRI scans with expert annotations. Extensive experimentation demonstrates 99.8% accuracy in detecting various tumor types, showcasing its potential to revolutionize diagnostic practices and improve patient outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信