{"title":"基于多尺度图神经网络的颅脑肿瘤自动分类与分级研究","authors":"Somya Srivastava, Parita Jain, Sanjay Kr Pandey, Gaurav Dubey, Nripendra Narayan Das","doi":"10.1007/s12539-025-00718-2","DOIUrl":null,"url":null,"abstract":"<p><p>The medical field uses Magnetic Resonance Imaging (MRI) as an essential diagnostic tool which provides doctors non-invasive images of brain structures and pathological conditions. Brain tumor detection stands as a vital application that needs specific and effective approaches for both medical diagnosis and treatment procedures. The challenges from manual examination of MRI scans stem from inconsistent tumor features including heterogeneity and irregular dimensions which results in inaccurate assessments of tumor size. To address these challenges, this paper proposes an Automated Classification and Grading Diagnosis Model (ACGDM) using MRI images. Unlike conventional methods, ACGDM introduces a Multi-Scale Graph Neural Network (MSGNN), which dynamically captures hierarchical and multi-scale dependencies in MRI data, enabling more accurate feature representation and contextual analysis. Additionally, the Spatio-Temporal Transformer Attention Mechanism (STTAM) effectively models both spatial MRI patterns and temporal evolution by incorporating cross-frame dependencies, enhancing the model's sensitivity to subtle disease progression. By analyzing multi-modal MRI sequences, ACGDM dynamically adjusts its focus across spatial and temporal dimensions, enabling precise identification of salient features. Simulations are conducted using Python and standard libraries to evaluate the model on the BRATS 2018, 2019, 2020 datasets and the Br235H dataset, encompassing diverse MRI scans with expert annotations. Extensive experimentation demonstrates 99.8% accuracy in detecting various tumor types, showcasing its potential to revolutionize diagnostic practices and improve patient outcomes.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Brain Tumor Classification and Grading Using Multi-scale Graph Neural Network with Spatio-Temporal Transformer Attention Through MRI Scans.\",\"authors\":\"Somya Srivastava, Parita Jain, Sanjay Kr Pandey, Gaurav Dubey, Nripendra Narayan Das\",\"doi\":\"10.1007/s12539-025-00718-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The medical field uses Magnetic Resonance Imaging (MRI) as an essential diagnostic tool which provides doctors non-invasive images of brain structures and pathological conditions. Brain tumor detection stands as a vital application that needs specific and effective approaches for both medical diagnosis and treatment procedures. The challenges from manual examination of MRI scans stem from inconsistent tumor features including heterogeneity and irregular dimensions which results in inaccurate assessments of tumor size. To address these challenges, this paper proposes an Automated Classification and Grading Diagnosis Model (ACGDM) using MRI images. Unlike conventional methods, ACGDM introduces a Multi-Scale Graph Neural Network (MSGNN), which dynamically captures hierarchical and multi-scale dependencies in MRI data, enabling more accurate feature representation and contextual analysis. Additionally, the Spatio-Temporal Transformer Attention Mechanism (STTAM) effectively models both spatial MRI patterns and temporal evolution by incorporating cross-frame dependencies, enhancing the model's sensitivity to subtle disease progression. By analyzing multi-modal MRI sequences, ACGDM dynamically adjusts its focus across spatial and temporal dimensions, enabling precise identification of salient features. Simulations are conducted using Python and standard libraries to evaluate the model on the BRATS 2018, 2019, 2020 datasets and the Br235H dataset, encompassing diverse MRI scans with expert annotations. Extensive experimentation demonstrates 99.8% accuracy in detecting various tumor types, showcasing its potential to revolutionize diagnostic practices and improve patient outcomes.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-025-00718-2\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00718-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Automated Brain Tumor Classification and Grading Using Multi-scale Graph Neural Network with Spatio-Temporal Transformer Attention Through MRI Scans.
The medical field uses Magnetic Resonance Imaging (MRI) as an essential diagnostic tool which provides doctors non-invasive images of brain structures and pathological conditions. Brain tumor detection stands as a vital application that needs specific and effective approaches for both medical diagnosis and treatment procedures. The challenges from manual examination of MRI scans stem from inconsistent tumor features including heterogeneity and irregular dimensions which results in inaccurate assessments of tumor size. To address these challenges, this paper proposes an Automated Classification and Grading Diagnosis Model (ACGDM) using MRI images. Unlike conventional methods, ACGDM introduces a Multi-Scale Graph Neural Network (MSGNN), which dynamically captures hierarchical and multi-scale dependencies in MRI data, enabling more accurate feature representation and contextual analysis. Additionally, the Spatio-Temporal Transformer Attention Mechanism (STTAM) effectively models both spatial MRI patterns and temporal evolution by incorporating cross-frame dependencies, enhancing the model's sensitivity to subtle disease progression. By analyzing multi-modal MRI sequences, ACGDM dynamically adjusts its focus across spatial and temporal dimensions, enabling precise identification of salient features. Simulations are conducted using Python and standard libraries to evaluate the model on the BRATS 2018, 2019, 2020 datasets and the Br235H dataset, encompassing diverse MRI scans with expert annotations. Extensive experimentation demonstrates 99.8% accuracy in detecting various tumor types, showcasing its potential to revolutionize diagnostic practices and improve patient outcomes.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.