OptimDase: An Algorithm for Predicting DNA Binding Sites with Combined Feature Encoding.

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Zhendong Liu, Jun S Liu, Dongqing Wei, Rongjun Man, Jiamin Jiang, Bofeng Zhang, Liping Li, Zhiyong Zhao
{"title":"OptimDase: An Algorithm for Predicting DNA Binding Sites with Combined Feature Encoding.","authors":"Zhendong Liu, Jun S Liu, Dongqing Wei, Rongjun Man, Jiamin Jiang, Bofeng Zhang, Liping Li, Zhiyong Zhao","doi":"10.1007/s12539-025-00704-8","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying DNA binding sites remains a critical task in bioinformatics, with applications ranging from gene regulation studies to drug design. Although progress has been made in computational techniques, we still face challenges such as data complexity and prediction accuracy. In this paper, we introduce OptimDase, a new algorithm. It integrates feature encoding with optimum decision-making frameworks to improve DNA binding site prediction. OptimDase integrates multi-scale scanning and feature selection strategies, making it highly effective for both classification and regression tasks. Our experiments demonstrate that OptimDase achieves superior performance with an accuracy of 0.8943 in classification tasks and an RMSE of 0.0054 in regression tasks, outperforming existing algorithms in key evaluation metrics. These results highlight OptimDase's portability and robustness, making it an effective solution for identifying DNA binding sites and advancing the applications of drug design.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00704-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying DNA binding sites remains a critical task in bioinformatics, with applications ranging from gene regulation studies to drug design. Although progress has been made in computational techniques, we still face challenges such as data complexity and prediction accuracy. In this paper, we introduce OptimDase, a new algorithm. It integrates feature encoding with optimum decision-making frameworks to improve DNA binding site prediction. OptimDase integrates multi-scale scanning and feature selection strategies, making it highly effective for both classification and regression tasks. Our experiments demonstrate that OptimDase achieves superior performance with an accuracy of 0.8943 in classification tasks and an RMSE of 0.0054 in regression tasks, outperforming existing algorithms in key evaluation metrics. These results highlight OptimDase's portability and robustness, making it an effective solution for identifying DNA binding sites and advancing the applications of drug design.

基于组合特征编码的DNA结合位点预测算法。
识别DNA结合位点仍然是生物信息学中的一项关键任务,其应用范围从基因调控研究到药物设计。尽管计算技术已经取得了进步,但我们仍然面临着数据复杂性和预测准确性等挑战。本文介绍了一种新的算法OptimDase。它将特征编码与最佳决策框架相结合,以提高DNA结合位点的预测。OptimDase集成了多尺度扫描和特征选择策略,使其在分类和回归任务中都非常有效。我们的实验表明,OptimDase在分类任务中的准确率为0.8943,在回归任务中的RMSE为0.0054,在关键评估指标上优于现有算法。这些结果突出了OptimDase的可移植性和健壮性,使其成为识别DNA结合位点和推进药物设计应用的有效解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信