{"title":"基于改进多目标粒子群优化和图关注网络的circrna -疾病关联预测。","authors":"Yuehao Wang, Pengli Lu","doi":"10.1007/s12539-025-00725-3","DOIUrl":null,"url":null,"abstract":"<p><p>Recently increasing researches have discovered that circRNAs are remarkably reliable in organisms and play a crucial role as marker in many diseases. Although deep learning techniques has been universally applied to investigate the relationship of circRNA-disease, optimizing many parameters involved in these techniques for best performance has been a challenge. Therefore, we present, for the first time, a multi-objective particle swarm optimization algorithm to optimize the parameters in a graph attention network, ensuring that the model operates at peak efficiency. In addition, it also limits feature learning due to uneven distribution of different node types in heterogeneous graphs based on association relationships. We suggest a unique approach, MOPSOGAT, to overcome the aforementioned problems. MOPSOGAT is a method for predicting circRNA-disease associations utilizing the improved multi-objective particle swarm optimization (MOPSO) and the graph attention network. Initially, we obtain node sequences by utilizing multiple circRNA similarities and disease phenotypic similarities, and employing a heterogeneous graph with random walks incorporating jump and stay strategies. These sequences are then processed using word2vec to derive the neighbor vectors of the nodes, thus providing initial embeddings for circRNAs and diseases. Subsequently, in order to model convergence and diversity of the Pareto front solutions, an improved MOPSO algorithm is used to iteratively search for optimal solutions in the parameter space. After MOPSO optimization, parameters are fed into a graph attention network to further refine the model embedding. As a result, MOPSOGAT performs better than deep learning based methods, solely multi-objective optimization-based methods and machine learning-based ways. Moreover, the potential associations predicted by MOPSOGAT have been validated through case studies, further demonstrating the potential of MOPSOGAT in future biomedical research.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MOPSOGAT: Predicting CircRNA-Disease Associations via Improved Multi-objective Particle Swarm Optimization and Graph Attention Network.\",\"authors\":\"Yuehao Wang, Pengli Lu\",\"doi\":\"10.1007/s12539-025-00725-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recently increasing researches have discovered that circRNAs are remarkably reliable in organisms and play a crucial role as marker in many diseases. Although deep learning techniques has been universally applied to investigate the relationship of circRNA-disease, optimizing many parameters involved in these techniques for best performance has been a challenge. Therefore, we present, for the first time, a multi-objective particle swarm optimization algorithm to optimize the parameters in a graph attention network, ensuring that the model operates at peak efficiency. In addition, it also limits feature learning due to uneven distribution of different node types in heterogeneous graphs based on association relationships. We suggest a unique approach, MOPSOGAT, to overcome the aforementioned problems. MOPSOGAT is a method for predicting circRNA-disease associations utilizing the improved multi-objective particle swarm optimization (MOPSO) and the graph attention network. Initially, we obtain node sequences by utilizing multiple circRNA similarities and disease phenotypic similarities, and employing a heterogeneous graph with random walks incorporating jump and stay strategies. These sequences are then processed using word2vec to derive the neighbor vectors of the nodes, thus providing initial embeddings for circRNAs and diseases. Subsequently, in order to model convergence and diversity of the Pareto front solutions, an improved MOPSO algorithm is used to iteratively search for optimal solutions in the parameter space. After MOPSO optimization, parameters are fed into a graph attention network to further refine the model embedding. As a result, MOPSOGAT performs better than deep learning based methods, solely multi-objective optimization-based methods and machine learning-based ways. Moreover, the potential associations predicted by MOPSOGAT have been validated through case studies, further demonstrating the potential of MOPSOGAT in future biomedical research.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-025-00725-3\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-025-00725-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
MOPSOGAT: Predicting CircRNA-Disease Associations via Improved Multi-objective Particle Swarm Optimization and Graph Attention Network.
Recently increasing researches have discovered that circRNAs are remarkably reliable in organisms and play a crucial role as marker in many diseases. Although deep learning techniques has been universally applied to investigate the relationship of circRNA-disease, optimizing many parameters involved in these techniques for best performance has been a challenge. Therefore, we present, for the first time, a multi-objective particle swarm optimization algorithm to optimize the parameters in a graph attention network, ensuring that the model operates at peak efficiency. In addition, it also limits feature learning due to uneven distribution of different node types in heterogeneous graphs based on association relationships. We suggest a unique approach, MOPSOGAT, to overcome the aforementioned problems. MOPSOGAT is a method for predicting circRNA-disease associations utilizing the improved multi-objective particle swarm optimization (MOPSO) and the graph attention network. Initially, we obtain node sequences by utilizing multiple circRNA similarities and disease phenotypic similarities, and employing a heterogeneous graph with random walks incorporating jump and stay strategies. These sequences are then processed using word2vec to derive the neighbor vectors of the nodes, thus providing initial embeddings for circRNAs and diseases. Subsequently, in order to model convergence and diversity of the Pareto front solutions, an improved MOPSO algorithm is used to iteratively search for optimal solutions in the parameter space. After MOPSO optimization, parameters are fed into a graph attention network to further refine the model embedding. As a result, MOPSOGAT performs better than deep learning based methods, solely multi-objective optimization-based methods and machine learning-based ways. Moreover, the potential associations predicted by MOPSOGAT have been validated through case studies, further demonstrating the potential of MOPSOGAT in future biomedical research.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.