Xuejiao Zhu , Bukang Wang , Yaya Yuan , Jianqiang Lei , Chunxiang Qian
{"title":"Interactions between deep microbial biosphere and geo-sequestrated CO2: A review","authors":"Xuejiao Zhu , Bukang Wang , Yaya Yuan , Jianqiang Lei , Chunxiang Qian","doi":"10.1016/j.ibiod.2024.105958","DOIUrl":"10.1016/j.ibiod.2024.105958","url":null,"abstract":"<div><div>CO<sub>2</sub> capture and storage (CCS) is a promising approach for significantly reducing CO<sub>2</sub> emission from industrial ends and mitigating global warming in the coming decades. Given that most of the subsurface formations are biological active environments, the deep microbial biosphere plays an important role in governing the fate and sequestration efficiency of injected CO<sub>2</sub>. While substantial researches have explored the initial states and microbial shifts following CO<sub>2</sub> injection, there remains a notable gap in studies that systematically examine the interactions between deep microbial biospheres and geologically injected CO<sub>2</sub>. Such understanding is essential for elucidating mechanisms and extents of geochemical CO<sub>2</sub> evolution under the subsurface microbial mediation. This paper comprehensively examines recent findings about impacts of CO<sub>2</sub> injection on deep microbial biosphere, and discusses microbial responses that are pivotal in determining the fate of the injected CO<sub>2</sub>. Initially, the review addresses the influence of elevated CO<sub>2</sub> on geological chemistry, including pH, ionic strength, redox state and free energy distribution. Subsequently, it delves into the adverse effects of CO<sub>2</sub> on microbial growth, cell integrity, endospore generation, metabolism and community dynamics. Lastly, the review emphasizes key microbial activities that potentially facilitate <em>in situ</em> CO<sub>2</sub> immobilization, including CO<sub>2</sub> mineralization, methanogenesis and conversion to other valued chemicals. The objective of this review is to elucidate how elevated CO<sub>2</sub> levels affect geological microbiology, and how microbial responses impact the fate and speciation of CO<sub>2</sub> in storage sites, and to provide insights for optimizing future CO<sub>2</sub> storage strategies in geological formations.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"197 ","pages":"Article 105958"},"PeriodicalIF":4.1,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142722397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dongyao Sun , Yinghui Jiang , Hengchen Wei , Jun Li , Dengzhou Gao , Xianbiao Lin , Cheng Chen , Guoyu Yin , Yifei Zhang , Lijun Hou , Min Liu , Ping Han
{"title":"Effects of reclamation on the distribution and diversity of comammox along the coastal wetlands of China","authors":"Dongyao Sun , Yinghui Jiang , Hengchen Wei , Jun Li , Dengzhou Gao , Xianbiao Lin , Cheng Chen , Guoyu Yin , Yifei Zhang , Lijun Hou , Min Liu , Ping Han","doi":"10.1016/j.ibiod.2024.105956","DOIUrl":"10.1016/j.ibiod.2024.105956","url":null,"abstract":"<div><div>Reclamation of estuarine wetlands for paddy fields (PF) and aquaculture ponds (AP) used to be a common practice in China, which has changed land types and significantly affected microbial nitrogen transformations. However, its impacts on nitrification process especially complete ammonia oxidizers (comammox) remain poorly understood. Our study investigated the distribution and diversity of comammox across the major estuarine wetland systems along the coast of China by comparing different land types, including paddy fields (PF), aquaculture ponds (AP), and wetlands. The results showed that reclamation for PF and AP (1.94 × 10<sup>6</sup> copies g<sup>−1</sup> soil) significantly reduced the gene abundance of comammox compared with wetlands (3.19 × 10<sup>6</sup> copies g<sup>−1</sup> soil), with higher ammonia-oxidizing archaea (AOA) and bacteria (AOB) abundances and the rates of nitrification in PF than in AP. Phylogenetic analysis revealed different community structures in the two reclamation types. The distribution pattern of comammox genes in PF was similar to that in estuarine wetlands, with clade A1 and clade A2.1 being the dominant branches. Water content, iron, sulfide, and salinity were identified as the key factors affecting the distribution of comammox. This study highlights the impact of reclamation on comammox in estuarine wetlands and expands our understanding of nitrogen cycling processes in estuarine systems.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"197 ","pages":"Article 105956"},"PeriodicalIF":4.1,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Feasibility of successive hydrogen and methane production: Effects of temperature and organic loads on energy potential and microbial dynamics","authors":"Kauanna Uyara Devens , Alexandre Rodrigues Ribeiro , Franciele Pereira Camargo , Isabel Kimiko Sakamoto , Maria Bernadete Amâncio Varesche , Edson Luiz Silva","doi":"10.1016/j.ibiod.2024.105955","DOIUrl":"10.1016/j.ibiod.2024.105955","url":null,"abstract":"<div><div>This study aims to assess the co-digestion of Cassava Wastewater (CW) and glycerol in a two-stage process using fluidized bed reactors (AFBR), verifying the effect of organic loading rate (OLR) and temperature (mesophilic [SMR] and thermophilic [STR]) in sequential reactors on CH<sub>4</sub> production. The OLR ranged from 1.2 to 15 g COD.L<sup>−1</sup>.d<sup>−1</sup> and the hydraulic retention time (HRT) was set at 20 h. The mesophilic sequential reactor (MSR) (average temperature of 30 °C) showed greater tolerance to high OLR and its best MPR was 101.12 mL of CH<sub>4</sub>.d<sup>−1</sup>.L<sup>−1</sup> h<sup>−1</sup>, obtained at a OLR of 15 g COD.L<sup>−1</sup>.d<sup>−1</sup>). The maximum yield was 341.10 mL of CH<sub>4</sub>.g<sup>−1</sup>COD<sub>cons</sub>, found at the OLR of 1.2 g COD.L<sup>−1</sup>.d<sup>−1</sup>. The sequential thermophilic reactor (STR) showed the maximum yield and MPR of 333.03 mL of CH<sub>4</sub>.g<sup>−1</sup>COD<sub>cons</sub> (1.2 g COD.L<sup>−1</sup>.d<sup>−1</sup>) and 58.84 mL of CH<sub>4</sub>.d<sup>− 1</sup>.L<sup>−1</sup> h<sup>−1</sup> (12 g COD.L<sup>−1</sup>.d<sup>−1</sup>), respectively. Through the massive sequencing analysis of the 16S rRNA gene, it was possible to observe a greater diversity of microorganisms in the TSR than in the MSR. A predominance of acetoclastic microorganisms was observed, with the genera <em>Methanobacterium</em>, <em>Methanosarcina</em> and <em>Methanobrevibacter</em> being the most abundant in both reactors. The two-stage system composed of mesophilic acidogenic reactor + MSR was more suitable for the co-digestion of CW and glycerol than the acidogenic reactor + TSR. These results support the notion of standard operating conditions at the industrial plant, where the cassava processing process is carried out at room temperature (25–30 °C).</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"196 ","pages":"Article 105955"},"PeriodicalIF":4.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142703403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chong Wang , Li Wang , Chongbin Bai , Mingpeng Wang , Tao Ma , Honglin Ma , Guangming Zhang , Weiwei Wang , Zisheng Guo , Yanmei Sun , Shiwei Wang
{"title":"Identification of the key factors influencing biodeterioration of open-air cultural heritage in the temperate climate zone of China","authors":"Chong Wang , Li Wang , Chongbin Bai , Mingpeng Wang , Tao Ma , Honglin Ma , Guangming Zhang , Weiwei Wang , Zisheng Guo , Yanmei Sun , Shiwei Wang","doi":"10.1016/j.ibiod.2024.105954","DOIUrl":"10.1016/j.ibiod.2024.105954","url":null,"abstract":"<div><div>Biodeterioration is known to cause irreversible damage to open-air cultural heritages. China has numerous open-air cultural heritages constructed of stone and brick, but very little information is available about the factors involved in their biodeterioration. In this study, different kinds of open-air cultural heritages (steles, towers, temples, Tang-ling carvings, and stone bridges) from 14 different locations in temperate climate zone of China were collected and investigated. Microbiological characteristics of these cultural heritages revealed that both cyanobacteria and lichens were the mainly dominant groups on these open-air stone and brick cultural heritages with visible deterioration. Cyanobacteria were closely associated with the severely deteriorated Tang-ling carvings wile lichens were most commonly found on temples and bridges. The main cyanobacteria were <em>Oscillatoria</em>, <em>Pleurocapsa</em>, and <em>Lyngbya</em>, and the dominant lichens were <em>Xanthoria</em> Th. Fr., <em>Lepraria</em>. Ach. and <em>Camellia</em> on the surface of cultural heritage. In addition, the extent of deterioration associated with cyanobacteria exhibited an increasing trend with higher annual mean sunshine intensity, calcite content, and cultural heritage age though not statistically significant. Redundancy analysis indicated that sunshine intensity and the age of the archeological structures were the key factors that significantly affected the biodeterioration of cultural heritages. This study provides more understanding of the microbial community associated with deterioration of open-air cultural heritages situated at the temperate climate zone of China.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"196 ","pages":"Article 105954"},"PeriodicalIF":4.1,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tiantian Liu , Yu Tao , Yushan Cai , Lihua Peng , Jin-Long Yang , Xiao Liang
{"title":"The impacts of flagellin on larval metamorphosis of mussel Mytilus coruscus varied with protein structure","authors":"Tiantian Liu , Yu Tao , Yushan Cai , Lihua Peng , Jin-Long Yang , Xiao Liang","doi":"10.1016/j.ibiod.2024.105952","DOIUrl":"10.1016/j.ibiod.2024.105952","url":null,"abstract":"<div><div>Flagellin produced by <em>Pseudoalteromonas marina</em> has been shown to induce larval metamorphosis in mussels. The flagellin protein FliC was composed of four subunits encoded by the genes <em>fliC-02330</em>, <em>fliC-02345</em>, <em>fliC-02346</em>, and <em>fliC-02347</em>. In this study, we investigated the effects of these four FliC proteins on biofilm formation and larval metamorphosis. The inducing activity of the recombinant proteins FliC-02345, FliC-02346, and FliC-02347 was similar and significantly higher (<em>p</em> < 0.05) than that of FliC-02330. When compared to the wild-type strain, biofilm formation was significantly enhanced in the four <em>fliC</em> mutants, whereas the inducing activity of four Δ<em>fliC</em> biofilms decreased. Among these mutants, Δ<em>fliC</em>-02330 exhibited the highest thickness, density, and c-di-GMP levels among its respective biofilms. The inducing activity of the Δ<em>fliC-02330</em> biofilm increased by 30–40% compared to the inducing activities of other mutant strains. Furthermore, structural analysis revealed differences in protein structure and phosphorylation sites between FliC-02330 and its counterparts (FliC-02345, FliC-02346, and FliC-02347), suggesting that variations in protein structure contribute to differing impacts on both biofilm formation and larval metamorphosis. These findings provide new insights into the interaction between bacterial flagellin protein and the larval metamorphosis of marine invertebrates.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"196 ","pages":"Article 105952"},"PeriodicalIF":4.1,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comprehending microplastic pollution in diverse environment: Assessing fate, impacts, and remediation approaches","authors":"Priyanka Yadav , Vishal Mishra","doi":"10.1016/j.ibiod.2024.105953","DOIUrl":"10.1016/j.ibiod.2024.105953","url":null,"abstract":"<div><div>Microplastics (MPs) pose pervasive environmental threats that potentially harm ecosystems and public health. Till date, most of the researches have predominantly concentrated on freshwater and marine ecosystems. This review attempts to provide current knowledge of microplastic pollution, its source, and its fate in all environmental compartments for instance soil, water, and atmosphere. Also briefly summarizes different MP's exposure routes and their negative consequences on public health. Various conventional methods have been used to remove MPs but these are inefficient owing to several demerits. Microbial approach is regarded as a safer option for removing MPs due to its unique metabolic mechanism. More than 400 microorganisms have been discovered as capable of MPs degradation. Fungi have appeared as the most proficient degraders of plastics among the microbes because they release unique enzymes and can thrive on hazardous components with low resources. Numerous fungal species that can break down various plastic kinds have been found in recent studies; nevertheless, there are still many unanswered questions regarding the mechanisms underlying biodegradation. The molecular mechanisms behind MP degradation via various enzymes have received little attention. Also, white-rot fungi have received the least attention among the fungi examined for biodegradation despite having a unique extracellular enzymatic system. Thus, the current study summarizes the ability of fungi that degrade various polymers and the function of multiple enzymes in the degradation of MPs. Also, the role of different extracellular and intracellular enzymes in biological degradation of MPs is discussed. Prospects for the future include tracking long-term trends in microplastic contamination, evaluating the effectiveness of clean-up techniques, and integrating the developed technologies with socioeconomic factors into policy frameworks.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"196 ","pages":"Article 105953"},"PeriodicalIF":4.1,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative studies on the effectiveness of proteases and enzymes from dietary supplements in the degradation of polylactide (PLA)","authors":"Katarzyna Janczak , Alicja Mazuryk , Daria Lisewska , Natalia Puszczykowska , Kacper Fiedurek","doi":"10.1016/j.ibiod.2024.105950","DOIUrl":"10.1016/j.ibiod.2024.105950","url":null,"abstract":"<div><div>Polylactide (PLA) has become one of the most widely used biodegradable plastics in recent years. The research focuses on solving the problem of its low-rate biodegradability under mesophilic conditions using cost-effective proteases of alternative origin. The aim of the study was to verify whether enzymes contained in food dietary supplements with the suggested high activity of protease enzymes could potentially be used for the degradation of PLA. The studies compare the activity of enzymes from dietary supplements with hydrolytic enzymes with scientifically proven effectiveness in degrading PLA. Products containing nattokinase, bromelain, papain and an enzyme mixture were tested. Their effectiveness against proteinase K, subtilisin and lipase was compared. From this group, proteinase K caused the greatest PLA mass loss and increase in O/C ratio after 28 days of incubation. The results indicated that nattokinase and papain caused a mass loss of PLA films similar to that of proteinase K, as well as a decrease in the carbonyl index value by more than 20%. Additionally, studies have shown that dietary supplements have a beneficial effect on the compost microflora. Causing an approximately 20-fold increase in the number of microorganisms within 48 h. In accordance with the assumptions, enzymatic products and their concentrations were selected that effectively accelerate PLA degradation in mesophilic conditions at a level comparable to or better than proteinase K, but have a much better effect on the substrate microflora, which makes them an interesting object for the development of products for accelerating the degradation of polymeric materials. In order to confirm the possibility of practical use of the results, an analysis of the phytotoxicity of the enzymes was carried out, which confirmed the possibility of using the enzymes in natural conditions.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"196 ","pages":"Article 105950"},"PeriodicalIF":4.1,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bioremediation approaches for chromium detoxification and transformation: Advanced strategies and future Perspectives","authors":"Arukula Deepa , Anthati Mastan , Viswanath Buddolla , Yedluri Anil Kumar , Buddolla Anantha Lakshmi , Young-Joon Kim","doi":"10.1016/j.ibiod.2024.105951","DOIUrl":"10.1016/j.ibiod.2024.105951","url":null,"abstract":"<div><div>Hexavalent chromium [Cr(VI)] contamination poses a significant environmental and public health risk due to its widespread industrial use, toxic nature, and carcinogenic properties. Conventional Cr(VI) remediation methods, including electrochemical processes, ion exchange, reverse osmosis, and adsorption, face challenges such as high energy consumption and incomplete detoxification. This review provides a comprehensive evaluation of cutting-edge bioremediation techniques for Cr(VI) removal, with an emphasis on microbial mechanisms involving bacteria and fungi. Bioremediation approaches, particularly those utilizing Cr(VI)-resistant microorganisms, present promising, eco-friendly, and cost-effective solutions for chromium pollution mitigation. The mechanisms of biosorption, bioaccumulation, and bio-reduction employed by these microorganisms are thoroughly examined. Furthermore, the review addresses the scalability and practical application of these biotechnologies in wastewater treatment facilities. This analysis highlights the critical need for innovative, sustainable chromium bioremediation strategies and outlines future research directions to advance this vital field.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"196 ","pages":"Article 105951"},"PeriodicalIF":4.1,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wanyun Li , Menghui Wang , Xuemin Zhang , Yali Xie , Wenjing Chen , Li Yao , Chao He , Xueli He
{"title":"Co-fermentation of dark septate endophytes and Trichoderma viride can effectively degrade cellulose in different Chinese medicinal herbal residues","authors":"Wanyun Li , Menghui Wang , Xuemin Zhang , Yali Xie , Wenjing Chen , Li Yao , Chao He , Xueli He","doi":"10.1016/j.ibiod.2024.105949","DOIUrl":"10.1016/j.ibiod.2024.105949","url":null,"abstract":"<div><div>Chinese medicinal herbal residues (CMHRs) are currently a widely overlooked renewable biomass resource, and developing controllable microbial fermentation technology for CMHRs will help achieve the resource utilization of CMHRs. In this study, the activity of various cellulases, reducing sugar content and cellulose degradation rate were combined to evaluate the solid state fermentation (SSF) potential of dark septate endophytes (DSE) and <em>Trichoderma viride</em> in separate fermentation and co-fermentation of different CMHRs (single <em>Astragalus mongolicus</em> residue and compound residues of <em>Panax notoginseng</em> and <em>Salvia miltiorrhiza</em>). The results showed that the cellulase activity of some DSE strains was higher than that of <em>T. viride</em>. <em>T. viride</em> fermentation alone could increase the content of substrate reducing sugars, while DSE fermentation could reduce the content of substrate reducing sugars. DSE strains such as <em>Macrophomina pseudophaseoline</em>, <em>Paraboeremia selaginellae</em>, <em>Paraphoma chlamydocopiosa</em> and <em>Paraphoma radicina</em> had the potential to co-ferment with <em>T. viride</em>. Optimization of the fermentation process by inoculation of <em>T</em>. <em>viride</em> after 3 d or 6 d of DSE effectively increased the cellulase activity of co-fermented CMHRs. After optimization, the activities of filter paper cellulase, carboxymethyl cellulase, and β-glucosidase in different fermentation combinations reached 2.51–5.61, 2.86–4.72 and 12.85–32.35 U/g, respectively. Further, the co-fermentation of DSE and <em>T. viride</em> effectively degraded cellulose in different CMHRs with a degradation rate of 54.43%–67.38%. Scanning electron microscope confirmed that the co-fermentation of DSE and <em>T. viride</em> could increase the external surface area and porosity of CMHRs, and destroy the structure of CMHRs. The results of this study both provided a basis for the microbial degradation of single and compound CMHR, which is of great significance for solving the treatment of waste such as Chinese herbal residue and further resource utilization.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"196 ","pages":"Article 105949"},"PeriodicalIF":4.1,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuang Zhang , Gaofei Ying , Tao Liu , Jiani Yang , Enci Zhu , Xindi Sun , Ji-Dong Gu , Lei Yan
{"title":"Basalt rock weathering by Peribacillus simplex from Wudalianchi volcanos in NE China and implications for Fe and Si biogeochemical cycling","authors":"Shuang Zhang , Gaofei Ying , Tao Liu , Jiani Yang , Enci Zhu , Xindi Sun , Ji-Dong Gu , Lei Yan","doi":"10.1016/j.ibiod.2024.105948","DOIUrl":"10.1016/j.ibiod.2024.105948","url":null,"abstract":"<div><div>Bacteria have an important role in weathering the different rocks, but little is known about the mechanism of microbial weathering in basalt rocks. In the present study, <em>Peribacillus simplex</em> WS-L19 isolated from Wudalianchi volcanos exhibits the highest Fe and Si rock dissolution, which revealed unique weathering ability. The optimal weathering conditions of LB medium diluted at 30.9%, the rotation speed of 127.2 rpm, and temperature at 36.6 °C, resulted in the Fe and Si releases of 1.70 ± 0.09 μg/mL and 20.11 ± 1.13 μg/mL, respectively. Simultaneously, complex ligands such as organic acids (tartaric acid, formic acid, lactic acid and succinic acid), siderophores, and biofilm were also found to be involved in weathering processes by <em>P. simplex</em> WS-L19. Kinetics study of Fe and Si release indicated that the weathering processes of volcanic rocks mediated by <em>P. simplex</em> WS-19 fits a Hyperbl model. Mineralogical analysis showed a decrease in Fe releasing ratio by 44.65% and an increase in Si releasing ratio by 28.45%, showing that Fe is more accessible than Si. <em>P. simplex</em> WS-L19 had a significant weathering effect on biotite, and Si-O bonding vibration might contribute to weathering. The results suggest that indigenous <em>P. simplex</em> WS-L19 plays a role in weathering Wudalianchi volcanos and provides new insights into the Fe and Si biogeochemical cycling of basalt rocks.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"196 ","pages":"Article 105948"},"PeriodicalIF":4.1,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}