Improving bioavailability of lignocellulosic biomass by pretreatment with the marine fungus Chaetomium sp. CS1

IF 4.1 2区 环境科学与生态学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Minghuang Ling , Ping Zheng , Xiaomei Huang , Gaili Fan , Huafeng Zhang , Zhijie Xu , Peiwen Zhuang , Changyou Wang , Hans-Peter Grossart , Kai Zhang , Zhuhua Luo
{"title":"Improving bioavailability of lignocellulosic biomass by pretreatment with the marine fungus Chaetomium sp. CS1","authors":"Minghuang Ling ,&nbsp;Ping Zheng ,&nbsp;Xiaomei Huang ,&nbsp;Gaili Fan ,&nbsp;Huafeng Zhang ,&nbsp;Zhijie Xu ,&nbsp;Peiwen Zhuang ,&nbsp;Changyou Wang ,&nbsp;Hans-Peter Grossart ,&nbsp;Kai Zhang ,&nbsp;Zhuhua Luo","doi":"10.1016/j.ibiod.2025.106031","DOIUrl":null,"url":null,"abstract":"<div><div>Crop straw and waste wood are abundant renewable biomass resources, but their complex lignocellulose composition limits industrial use. This study introduces an eco-friendly solution by bio-converting lignocellulosic biomass into biofuels and biochemicals using <em>Chaetomium</em> sp. CS1, a deep-sea fungus that degrades 55% of alkali lignin in 10 days. Gas chromatography-mass spectrometry (GC-MS) analysis indicated guaiacol as the primary pyrolysis product from G-type lignin, which could be further converted into alkanes and other intermediates. Transcriptomic analysis identified numerous genes encoding ligninolytic enzymes, including highly induced AA3 family enzymes with oxidoreductase and monooxygenase activities, during lignin degradation. A copper-containing nitrite reductase gene was significantly induced, enhancing denitrification and reducing nitrite to aid detoxification. Fungal pretreatment significantly improved the digestibility of sawdust by black soldier fly larvae, enhancing the bioavailability of lignocellulosic materials. These knowledge into fungal lignin degradation provide a basis for efficient lignocellulose pretreatment, enabling high-value biofuel and bioproduct production.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"199 ","pages":"Article 106031"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964830525000356","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Crop straw and waste wood are abundant renewable biomass resources, but their complex lignocellulose composition limits industrial use. This study introduces an eco-friendly solution by bio-converting lignocellulosic biomass into biofuels and biochemicals using Chaetomium sp. CS1, a deep-sea fungus that degrades 55% of alkali lignin in 10 days. Gas chromatography-mass spectrometry (GC-MS) analysis indicated guaiacol as the primary pyrolysis product from G-type lignin, which could be further converted into alkanes and other intermediates. Transcriptomic analysis identified numerous genes encoding ligninolytic enzymes, including highly induced AA3 family enzymes with oxidoreductase and monooxygenase activities, during lignin degradation. A copper-containing nitrite reductase gene was significantly induced, enhancing denitrification and reducing nitrite to aid detoxification. Fungal pretreatment significantly improved the digestibility of sawdust by black soldier fly larvae, enhancing the bioavailability of lignocellulosic materials. These knowledge into fungal lignin degradation provide a basis for efficient lignocellulose pretreatment, enabling high-value biofuel and bioproduct production.
用海洋真菌 Chaetomium sp. CS1 进行预处理,提高木质纤维素生物质的生物利用率
农作物秸秆和废木材是丰富的可再生生物质资源,但其复杂的木质纤维素组成限制了工业利用。这项研究介绍了一种生态友好的解决方案,利用毛藻CS1将木质纤维素生物质转化为生物燃料和生化物质,毛藻CS1是一种深海真菌,在10天内降解55%的碱木质素。气相色谱-质谱(GC-MS)分析表明,愈创木酚是g型木质素的主要热解产物,可进一步转化为烷烃和其他中间体。转录组学分析发现了许多编码木质素降解酶的基因,包括在木质素降解过程中高度诱导的具有氧化还原酶和单氧化酶活性的AA3家族酶。一个含铜的亚硝酸盐还原酶基因被显著诱导,增强了反硝化作用,减少了亚硝酸盐,帮助解毒。真菌预处理显著提高了黑虻幼虫对木屑的消化率,提高了木质纤维素材料的生物利用度。这些关于真菌木质素降解的知识为有效的木质纤维素预处理提供了基础,从而实现高价值生物燃料和生物产品的生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
10.40%
发文量
107
审稿时长
21 days
期刊介绍: International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信