用海洋真菌 Chaetomium sp. CS1 进行预处理,提高木质纤维素生物质的生物利用率

IF 4.1 2区 环境科学与生态学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Minghuang Ling , Ping Zheng , Xiaomei Huang , Gaili Fan , Huafeng Zhang , Zhijie Xu , Peiwen Zhuang , Changyou Wang , Hans-Peter Grossart , Kai Zhang , Zhuhua Luo
{"title":"用海洋真菌 Chaetomium sp. CS1 进行预处理,提高木质纤维素生物质的生物利用率","authors":"Minghuang Ling ,&nbsp;Ping Zheng ,&nbsp;Xiaomei Huang ,&nbsp;Gaili Fan ,&nbsp;Huafeng Zhang ,&nbsp;Zhijie Xu ,&nbsp;Peiwen Zhuang ,&nbsp;Changyou Wang ,&nbsp;Hans-Peter Grossart ,&nbsp;Kai Zhang ,&nbsp;Zhuhua Luo","doi":"10.1016/j.ibiod.2025.106031","DOIUrl":null,"url":null,"abstract":"<div><div>Crop straw and waste wood are abundant renewable biomass resources, but their complex lignocellulose composition limits industrial use. This study introduces an eco-friendly solution by bio-converting lignocellulosic biomass into biofuels and biochemicals using <em>Chaetomium</em> sp. CS1, a deep-sea fungus that degrades 55% of alkali lignin in 10 days. Gas chromatography-mass spectrometry (GC-MS) analysis indicated guaiacol as the primary pyrolysis product from G-type lignin, which could be further converted into alkanes and other intermediates. Transcriptomic analysis identified numerous genes encoding ligninolytic enzymes, including highly induced AA3 family enzymes with oxidoreductase and monooxygenase activities, during lignin degradation. A copper-containing nitrite reductase gene was significantly induced, enhancing denitrification and reducing nitrite to aid detoxification. Fungal pretreatment significantly improved the digestibility of sawdust by black soldier fly larvae, enhancing the bioavailability of lignocellulosic materials. These knowledge into fungal lignin degradation provide a basis for efficient lignocellulose pretreatment, enabling high-value biofuel and bioproduct production.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"199 ","pages":"Article 106031"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving bioavailability of lignocellulosic biomass by pretreatment with the marine fungus Chaetomium sp. CS1\",\"authors\":\"Minghuang Ling ,&nbsp;Ping Zheng ,&nbsp;Xiaomei Huang ,&nbsp;Gaili Fan ,&nbsp;Huafeng Zhang ,&nbsp;Zhijie Xu ,&nbsp;Peiwen Zhuang ,&nbsp;Changyou Wang ,&nbsp;Hans-Peter Grossart ,&nbsp;Kai Zhang ,&nbsp;Zhuhua Luo\",\"doi\":\"10.1016/j.ibiod.2025.106031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Crop straw and waste wood are abundant renewable biomass resources, but their complex lignocellulose composition limits industrial use. This study introduces an eco-friendly solution by bio-converting lignocellulosic biomass into biofuels and biochemicals using <em>Chaetomium</em> sp. CS1, a deep-sea fungus that degrades 55% of alkali lignin in 10 days. Gas chromatography-mass spectrometry (GC-MS) analysis indicated guaiacol as the primary pyrolysis product from G-type lignin, which could be further converted into alkanes and other intermediates. Transcriptomic analysis identified numerous genes encoding ligninolytic enzymes, including highly induced AA3 family enzymes with oxidoreductase and monooxygenase activities, during lignin degradation. A copper-containing nitrite reductase gene was significantly induced, enhancing denitrification and reducing nitrite to aid detoxification. Fungal pretreatment significantly improved the digestibility of sawdust by black soldier fly larvae, enhancing the bioavailability of lignocellulosic materials. These knowledge into fungal lignin degradation provide a basis for efficient lignocellulose pretreatment, enabling high-value biofuel and bioproduct production.</div></div>\",\"PeriodicalId\":13643,\"journal\":{\"name\":\"International Biodeterioration & Biodegradation\",\"volume\":\"199 \",\"pages\":\"Article 106031\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Biodeterioration & Biodegradation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0964830525000356\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964830525000356","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving bioavailability of lignocellulosic biomass by pretreatment with the marine fungus Chaetomium sp. CS1
Crop straw and waste wood are abundant renewable biomass resources, but their complex lignocellulose composition limits industrial use. This study introduces an eco-friendly solution by bio-converting lignocellulosic biomass into biofuels and biochemicals using Chaetomium sp. CS1, a deep-sea fungus that degrades 55% of alkali lignin in 10 days. Gas chromatography-mass spectrometry (GC-MS) analysis indicated guaiacol as the primary pyrolysis product from G-type lignin, which could be further converted into alkanes and other intermediates. Transcriptomic analysis identified numerous genes encoding ligninolytic enzymes, including highly induced AA3 family enzymes with oxidoreductase and monooxygenase activities, during lignin degradation. A copper-containing nitrite reductase gene was significantly induced, enhancing denitrification and reducing nitrite to aid detoxification. Fungal pretreatment significantly improved the digestibility of sawdust by black soldier fly larvae, enhancing the bioavailability of lignocellulosic materials. These knowledge into fungal lignin degradation provide a basis for efficient lignocellulose pretreatment, enabling high-value biofuel and bioproduct production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
10.40%
发文量
107
审稿时长
21 days
期刊介绍: International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信