Insect Science最新文献

筛选
英文 中文
Fungi on the cuticle surface increase the resistance of Aedes albopictus to deltamethrin. 表皮表面的真菌会增加白纹伊蚊对溴氰菊酯的抗性。
IF 2.9 1区 农林科学
Insect Science Pub Date : 2025-01-19 DOI: 10.1111/1744-7917.13503
Ju-Ping Hu, Si-Jia Deng, Lin Gu, Lin Li, Lei Tu, Ju-Lin Li, Jian-Xia Tang, Guo-Ding Zhu
{"title":"Fungi on the cuticle surface increase the resistance of Aedes albopictus to deltamethrin.","authors":"Ju-Ping Hu, Si-Jia Deng, Lin Gu, Lin Li, Lei Tu, Ju-Lin Li, Jian-Xia Tang, Guo-Ding Zhu","doi":"10.1111/1744-7917.13503","DOIUrl":"https://doi.org/10.1111/1744-7917.13503","url":null,"abstract":"<p><p>Aedes albopictus (Ae. albopictus) is widely distributed and can transmit many infectious diseases, and insecticide-based interventions play an important role in vector control. However, increased insecticide resistance has become a severe public health problem, and the clarification of its detailed mechanism is a matter of urgence. This study found that target-site resistance and metabolic resistance could not fully explain insecticide resistance in field Ae. albopictus, and there were likely other resistance mechanisms involved. The 16S and internal transcribed spacer sequencing revealed significant differences in the species compositions of the cuticle surface symbiotic bacteria and fungi between deltamethrin (DM)-resistant (DR) and DM-susceptible (DS) Ae. albopictus. Additionally, the abundances of Serratia spp. and Candida spp. significantly increased after DM treatment. Furthermore, 2 fungi (Rhodotorula mucilaginosa and Candida melibiosica) and 3 bacteria (Serratia marcescens, Klebsiella aerogenes, and Serratia sp.) isolated from DR Ae. albopictus can use DM as their sole carbon source. After reinoculation onto the cuticle surface of DS Ae. albopictus, R. mucilaginosa and C. melibiosica significantly enhanced the DM resistance of Ae. albopictus. Moreover, transcriptome sequencing of the surviving Ae. albopictus after DM exposure revealed that the gene expression of cytochrome P450 enzymes and glutathione-S-transferases increased, suggesting that besides the direct degradation, the candidate degrading microbes could also cause insecticide resistance via indirect enhancement of mosquito gene expression. In conclusion, we demonstrated that the cuticle surface symbiotic microbes were involved in the development of insecticide resistance in Ae. albopictus, providing novel and supplementary insights into insecticide resistance mechanisms.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143004734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High migratory potential of fall armyworm in West Africa despite stable temperatures and widely available year-round habitats. 西非尽管气温稳定且有广泛的全年栖息地,但秋粘虫的高迁徙潜力。
IF 2.9 1区 农林科学
Insect Science Pub Date : 2025-01-19 DOI: 10.1111/1744-7917.13502
Fan-Qi Gao, Hui Chen, Rosina Kyerematen, Gao Hu, Regan Early, Jason W Chapman
{"title":"High migratory potential of fall armyworm in West Africa despite stable temperatures and widely available year-round habitats.","authors":"Fan-Qi Gao, Hui Chen, Rosina Kyerematen, Gao Hu, Regan Early, Jason W Chapman","doi":"10.1111/1744-7917.13502","DOIUrl":"https://doi.org/10.1111/1744-7917.13502","url":null,"abstract":"<p><p>The fall armyworm (FAW), an important migratory pest native to the Americas, was first detected in a nonnative region (West Africa) in 2016. In the following years, it quickly spread to multiple regions worldwide. FAW exhibits long-distance seasonal migration in both the Americas and Asia, primarily to take advantage of suitable seasonal habitats as they appear along the migratory pathways. Tropical West Africa experiences minimal annual temperature variation and has widely distributed potential year-round habitats, leading us to hypothesize that the migration capacity of FAW populations in this region may be substantially reduced. To test our hypothesis, we assessed the flight performance of FAW collected from Ghana in West Africa with tethered flight mills and compared it to that of a FAW population from southern China. Additionally, we quantified the relationships between morphological characteristics and flight performance of the FAW from Ghana. Based on observed flight behaviors, we categorized FAW into migratory and non-migratory types. The flight capabilities of first-generation Ghanaian FAW bred in the laboratory were similar to that of the field population from Yunnan, Southwest China, with migrants making up the majority. However, after several generations of laboratory rearing, the flight capability of the Ghanaian population significantly declined, primarily due to a marked increase in the proportion of non-migratory individuals. The low correlation between morphological variables and flight duration suggests that genetic factors likely determine most variations in flight propensity. The results of this study indicate that FAW with high migratory capacity in West Africa is likely to pose a threat to crops in eradication zones and neighboring uninvaded areas and may possibly be capable of crossing the Sahara Desert and invading Europe. Therefore, it is crucial to establish comprehensive pest early warning and management systems.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143004781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of mitochondrial complex I genes in host plant expansion of Bactrocera tau (Tephritidae: Diptera) by CRISPR/Cas9 system. 利用CRISPR/Cas9系统研究线粒体复合体I基因在双翅目小实蝇宿主植物扩增中的作用
IF 2.9 1区 农林科学
Insect Science Pub Date : 2025-01-19 DOI: 10.1111/1744-7917.13495
Wei Shi, Linsheng He, Ruixiang Li, Jun Cao
{"title":"Role of mitochondrial complex I genes in host plant expansion of Bactrocera tau (Tephritidae: Diptera) by CRISPR/Cas9 system.","authors":"Wei Shi, Linsheng He, Ruixiang Li, Jun Cao","doi":"10.1111/1744-7917.13495","DOIUrl":"https://doi.org/10.1111/1744-7917.13495","url":null,"abstract":"<p><p>Host expansion facilitates tephritid flies to expand their ranges. Unraveling the mechanisms of host expansion will help to efficiently control these pests. Our previous works showed mitochondrial complex I genes Ndufs1, Ndufs3, and Ndufa7 being upregulated during host expansion of Bactrocera tau (Walker), one of the highly hazardous species of tephritids. However, their roles in the host expansion of B. tau remain unknown. Here, using clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR-associated nuclease 9 (Cas9) editing system for the first time, a stable homozygous Ndufa7 strain (Btndufa7<sup>-/-</sup>), heterozygous Ndufs1 (Btndufs1<sup>+/-</sup>), and Ndufs3 strains (Btndufs3<sup>+/-</sup>) were obtained from F3 generation of B. tau, after gene knockout. Reduced sizes of larvae and pupae of the Ndufa7 knockout strain were first observed. Notably, the mean values of fitness estimation (pupal numbers, single-pupal weight and emergence rate) and Ndufa7 gene expression in the Ndufa7 knockout strain were slightly reduced on 2 native hosts (summer squash and cucumber), while it sharply decreased on the novel host banana and the potential host pitaya, compared with those of the wild-type strain. Furthermore, the Ndufa7 knockout strain did not survive on the novel host guava. These results suggested that Ndufa7 disturbs the survival on native hosts, expansion to novel hosts, and further expansion to potential hosts of B. tau. Homozygous lethality occurred after the knockout of Ndufs1 or Ndufs3, suggesting that these 2 genes play a role in the early development of B. tau. This study revealed that Ndufa7 is a target gene for the management of tephritids and opens a new avenue for pest control research.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143004783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The OnSPN2 from the nipa palm hispid beetle Octodonta nipae is a multipurpose defense tool against proteases from different peptidase families. nipa palm hispid甲虫(Octodonta nipae)的OnSPN2是一种针对不同肽酶家族蛋白酶的多用途防御工具。
IF 2.9 1区 农林科学
Insect Science Pub Date : 2025-01-19 DOI: 10.1111/1744-7917.13483
Huajian Zhang, Jiawei Xu, Mintao Chen, Jiawei Yin, Youming Hou, Baozhen Tang
{"title":"The OnSPN2 from the nipa palm hispid beetle Octodonta nipae is a multipurpose defense tool against proteases from different peptidase families.","authors":"Huajian Zhang, Jiawei Xu, Mintao Chen, Jiawei Yin, Youming Hou, Baozhen Tang","doi":"10.1111/1744-7917.13483","DOIUrl":"https://doi.org/10.1111/1744-7917.13483","url":null,"abstract":"<p><p>Serpins (serine protease inhibitors) constitute a superfamily of proteins with functional diversity and unusual conformational flexibility. In insects, serpins act as multiple inhibitors, by forming inactive acyl-enzyme complexes, in regulating Spätzles activation, phenoloxidases (POs) activity, and other cytokines. In this study, we present the cloning and characterization of Octodonta nipae serpin2 (OnSPN2), a 415 residues protein homologous to Tenebrio molitor 42Dd-like. Notably, OnSPN2 features an arginine residue (R364) at the P1 position, and additional arginine residues (R362, R367) at the P3 and P3' positions, respectively which is crucial for protease inhibition. Immunohistochemistry (IHC) and Western blot analyses revealed that OnSPN2 is primarily synthesized in plasmatocytes and then released into the plasma to exert its function. RNA interference results indicated that OnSPN2 knockdown may depress serine protease in melanization and remarkably increase the transcript level of Attacin in hemolymph, but its messenger RNA levels were not changed upon immune induction. Reciprocal co-immunoprecipitation assay results confirmed that OnSPN2 binds to OnPPAF1 and OnSP8, indicating its role as a negative regulator in the PO and AMP pathway. Intriguingly, several cathepsin-L isoforms were identified in the OnSPN2 immunoprecipitated samples. The cathepsin-L inhibition assays and protein-protein docking results, identified cathepsin-L as a potential target of OnSPN2. These results indicate that OnSPN2 is produced as an intracellular resident and additionally is associated with the PO and AMP pathway. OnSPN2 represents a multiple defense tool that may provide multiple antiproteolytic functions.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143004800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The endocuticle structural glycoprotein AgSgAbd-2-like is required for cuticle formation and survival in the melon aphid Aphis gossypii. 甜瓜蚜虫表皮形成和存活需要内胚层结构糖蛋白AgSgAbd-2-like。
IF 2.9 1区 农林科学
Insect Science Pub Date : 2025-01-17 DOI: 10.1111/1744-7917.13499
Mingyu Guo, Xueting Qu, Shenhang Cheng, Haiqi Wang, Yang Xue, Jie Shen, Dan Wang
{"title":"The endocuticle structural glycoprotein AgSgAbd-2-like is required for cuticle formation and survival in the melon aphid Aphis gossypii.","authors":"Mingyu Guo, Xueting Qu, Shenhang Cheng, Haiqi Wang, Yang Xue, Jie Shen, Dan Wang","doi":"10.1111/1744-7917.13499","DOIUrl":"https://doi.org/10.1111/1744-7917.13499","url":null,"abstract":"<p><p>Cuticular proteins are essential for cuticle formation, molting, and survival in insects. However, functional analysis of cuticular proteins in the melon aphid has been limited. In this study, we identified an endocuticle structural glycoprotein (ESG) AgSgAbd-2-like in the melon aphid Aphis gossypii, which is a member of the RR-1 subfamily of the CPR (cuticular protein containing the conserved Rebers-Riddiford motif) chitin-binding proteins. When double-stranded RNA is delivered epidermally, AgSgAbd-2-like is knocked down, resulting in molting defects and mortality. The expression of AgSgAbd-2-like is comparatively low prior to molting and increases following molting. Ecdysone signaling consistently suppresses AgSgAbd-2-like. Histologically, the endocuticle and whole cuticle are thinner in AgSgAbd-2-like RNA interference (RNAi) aphids, which is a leading cause of molting defects and mortality. Furthermore, knockdown of any other homolog of ESGs, including AgSgAbd-4, AgSgAbd-4-like, AgSgAbd-8-like, and AgSgAbd-9-like, results in molting defects and death, like that by AgSgAbd-2-like RNAi. These results indicate that the melon aphid ESGs are conserved in cuticle formation and could be potential targets for RNAi-based pest management.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143004787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Changes in blowfly (Diptera: Calliphoridae) wing morphology during succession in rat carcasses across forest and grassland habitats in South Brazil. 巴西南部森林和草原大鼠尸体演替过程中苍蝇(双翅目:蛱蝶科)翅膀形态的变化。
IF 2.9 1区 农林科学
Insect Science Pub Date : 2025-01-16 DOI: 10.1111/1744-7917.13468
Lucas Ferreira Colares, Anita da Silva Herdina, Mariana Bender, Cristian de Sales Dambros
{"title":"Changes in blowfly (Diptera: Calliphoridae) wing morphology during succession in rat carcasses across forest and grassland habitats in South Brazil.","authors":"Lucas Ferreira Colares, Anita da Silva Herdina, Mariana Bender, Cristian de Sales Dambros","doi":"10.1111/1744-7917.13468","DOIUrl":"https://doi.org/10.1111/1744-7917.13468","url":null,"abstract":"<p><p>Succession is one of the most extensively studied ecological phenomena, yet debates persist about the importance of dispersal and external factors in driving this process. We aimed to quantify the influence of these factors by investigating how wing-related traits evolve across succession of blowfly (Diptera: Calliphoridae) communities in South Brazil. Rat carrion was placed in both forest and grassland habitats, and the associated blowfly communities were documented throughout the decomposition process. Using morphometric analysis, we measured wing and thorax traits and assessed trait changes over succession through mixed models. Our findings revealed that carrion succession follows distinct trajectories in forest and grassland environments. Specifically, we observed that Calliphora lopesi predominantly visited carcasses during the final phase of decomposition, resulting in significant differences in species composition and wing size between habitats. In forests, wing size increased toward the later stages of succession, whereas an opposite trend was observed in grasslands. Notably, these trait patterns were only evident at the species level, indicating that intraspecific trait variation is irrelevant. Stronger dispersers tend to arrive during the later stages of succession, suggesting that dispersal has a negligible role in shaping successional dynamics. Instead, environmental differences between habitats drive trait patterns throughout succession. Our results suggest that community composition in ephemeral resources is governed by deterministic processes and that successional stages can be predicted based on blowfly wing traits. Specifically, the presence of the large-winged C. lopesi indicates late decay, while the small-winged Chrysomia albiceps and Lucilia eximia are indicative of early decay.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143004720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting the Hh and Hippo pathways by miR-7 suppresses the development of insect wings. miR-7靶向Hh和Hippo通路可抑制昆虫翅膀的发育。
IF 2.9 1区 农林科学
Insect Science Pub Date : 2025-01-16 DOI: 10.1111/1744-7917.13498
Mingming Li, Xuan Yu, Zhihao Yao, Xuequan Gao, Qingxin Liu, Zizhang Zhou, Yunhe Zhao
{"title":"Targeting the Hh and Hippo pathways by miR-7 suppresses the development of insect wings.","authors":"Mingming Li, Xuan Yu, Zhihao Yao, Xuequan Gao, Qingxin Liu, Zizhang Zhou, Yunhe Zhao","doi":"10.1111/1744-7917.13498","DOIUrl":"https://doi.org/10.1111/1744-7917.13498","url":null,"abstract":"<p><p>Wings are important organs of insects involved in flight, mating, and other behaviors, and are therefore prime targets for pest control. The formation of insect wings is a complex process that is regulated by multiple pathways. The Hedgehog (Hh) pathway regulates the distribution of wing veins, while the Hippo pathway modulates wing size. Any interventions that can manipulate these pathways have the potential to disrupt wing development and could be used for pest control. In this study, we find that overexpression of miR-7 in Drosophila results in smaller wings with disordered veins. Mechanistically, miR-7 directly targets both ci and yki via different mature miRNAs (miR-7-5p and miR-7-3p), thereby disrupting the Hh and Hippo pathways. Importantly, this regulatory mechanism is also observed in another insect species, Helicoverpa armigera. Finally, by utilizing a nanocarrier delivery system, we show that introducing miR-7 via star polycation (SPc) leads to wing defects in H. armigera. In conclusion, these findings uncover that miR-7 inhibits wing formation by targeting both the Hippo and Hh pathways, indicating its potential for use in pest control strategies.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143004785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Administration of coexpressed artificial microRNA and bacteriophage MS2 virus-like particles provides protection against Spodoptera litura. 共表达的人工microRNA和噬菌体MS2病毒样颗粒对斜纹夜蛾具有保护作用。
IF 2.9 1区 农林科学
Insect Science Pub Date : 2025-01-16 DOI: 10.1111/1744-7917.13505
Mingming Jiang, Yao Zhang, Chunmei Jiang, Jiang Zhang, Ling Chang, Shengchun Li
{"title":"Administration of coexpressed artificial microRNA and bacteriophage MS2 virus-like particles provides protection against Spodoptera litura.","authors":"Mingming Jiang, Yao Zhang, Chunmei Jiang, Jiang Zhang, Ling Chang, Shengchun Li","doi":"10.1111/1744-7917.13505","DOIUrl":"https://doi.org/10.1111/1744-7917.13505","url":null,"abstract":"","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143004717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clock genes regulate sex pheromone production and male mating ability in Bactrocera dorsalis. 时钟基因调节背小实蝇性信息素的产生和雄性交配能力。
IF 2.9 1区 农林科学
Insect Science Pub Date : 2025-01-16 DOI: 10.1111/1744-7917.13490
Xinlian Li, Long Ye, Yanling Jiang, Daifeng Cheng, Yongyue Lu
{"title":"Clock genes regulate sex pheromone production and male mating ability in Bactrocera dorsalis.","authors":"Xinlian Li, Long Ye, Yanling Jiang, Daifeng Cheng, Yongyue Lu","doi":"10.1111/1744-7917.13490","DOIUrl":"https://doi.org/10.1111/1744-7917.13490","url":null,"abstract":"<p><p>Many animals display physiological and behavioral activities limited to specific times of the day. Certain insects exhibit clear daily rhythms in their mating activities that are regulated by an internal biological clock. However, the specific genetic mechanisms underlying this regulation remain largely unexplored. Mating in the fruit fly Bactrocera dorsalis exhibits a daily rhythm and is dependent on sex pheromones produced in the male rectum. We used transcriptome sequencing and clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR-associated nuclease 9 techniques to understand whether the daily rhythmicity of mating in B. dorsalis and sex pheromone production in the rectum are regulated by clock genes. The results showed that the production of sex pheromones by B. dorsalis males is rhythmic (low during the day and high at night) and is influenced by clock genes. Knockout of the clock genes cryptochrome 1 (cry1) and timeless (tim) reduced the production of sex pheromones and significantly impaired mating ability in males. In addition, quantitative polymerase chain reaction results from 5 different tissues showed cry1 was highly expressed in the head, whereas tim was highly expressed in both the head and rectum (a key site for male sex pheromone production). Transcriptome analysis confirmed that cry1 (head) and tim (head and rectum) exhibit rhythmic expressions consistent with sex pheromone rhythmicity. These results suggest that cry1 may be related to a central clock neuron (like the suprachiasmatic nucleus), whereas the rhythmic expression of tim in the rectum indicates the potential presence of peripheral oscillators. Our study reveals new targets and ideas for improved control of the fruit fly.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143004725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seven up regulates reproductive diapause initiation via juvenile hormone biosynthesis in the cabbage beetle Colaphellus bowringi. 七升通过幼体激素生物合成调控白菜甲虫生殖滞育起始。
IF 2.9 1区 农林科学
Insect Science Pub Date : 2025-01-16 DOI: 10.1111/1744-7917.13497
Kou Wang, Yu-Lian Zhao, Yan-Zi Jiang, Wen Liu, Xiao-Ping Wang
{"title":"Seven up regulates reproductive diapause initiation via juvenile hormone biosynthesis in the cabbage beetle Colaphellus bowringi.","authors":"Kou Wang, Yu-Lian Zhao, Yan-Zi Jiang, Wen Liu, Xiao-Ping Wang","doi":"10.1111/1744-7917.13497","DOIUrl":"https://doi.org/10.1111/1744-7917.13497","url":null,"abstract":"<p><p>Reproductive diapause is an insect survival strategy in which reproduction temporarily halts in response to adverse environmental changes. This process is characterized by arrested ovarian development and lipid accumulation in females. A reduction in juvenile hormone (JH) biosynthesis is known to initiate reproductive diapause, but its regulatory mechanism remains unclear. Seven up (Svp), a transcription factor from the nuclear receptor family, plays a crucial role in various developmental processes in insects. In this study, using the cabbage beetle Colaphellus bowringi as a model, we observed higher expression of Svp in the heads of female adults under reproductive photoperiodic conditions (short-day [SD]) compared to diapause conditions (long-day [LD]). RNA interference-mediated knockdown of Svp in SD females induced typical diapause phenotypes, including ovarian arrest and lipid accumulation. The application of methoprene (ME), a JH receptor agonist, reversed these diapause phenotypes and restored reproduction, indicating that Svp's regulation of reproductive diapause is dependent on JH signaling. Additionally, Svp knockdown led to the downregulation of JH pathway genes and a reduction in JH titers. Further evidence suggested that Svp regulates the expression of JHAMT1, a critical gene in JH biosynthesis, which determines diapause entry in C. bowringi. These findings suggest that diapause-inducing photoperiods suppress Svp expression, blocking JH production and triggering diapause. This work reveals a critical transcription factor that regulates reproductive diapause initiation through modulating JH production, providing a potential target for controlling pests capable of entering reproductive diapause.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143004784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信