Indoor air最新文献

筛选
英文 中文
Detection and High-Throughput Microbial Analysis of Particulate Matter in Houses and Downwind Areas of Duck Farms 鸭场房舍和下风区微粒物质的检测和高通量微生物分析
IF 5.8 2区 环境科学与生态学
Indoor air Pub Date : 2024-04-12 DOI: 10.1155/2024/7774679
Zhengxiu Qu, Hairong Wang, Ning Li, Zhiyun Guo, Jing Li, Xiaoyang Lv, Yinling Cui, Tongjie Chai
{"title":"Detection and High-Throughput Microbial Analysis of Particulate Matter in Houses and Downwind Areas of Duck Farms","authors":"Zhengxiu Qu,&nbsp;Hairong Wang,&nbsp;Ning Li,&nbsp;Zhiyun Guo,&nbsp;Jing Li,&nbsp;Xiaoyang Lv,&nbsp;Yinling Cui,&nbsp;Tongjie Chai","doi":"10.1155/2024/7774679","DOIUrl":"10.1155/2024/7774679","url":null,"abstract":"<p>Particulate matter (PM) and the microorganisms of duck houses may have negative impacts on animal and human health. During 2021-2022, PM2.5 and PM10 inside and outside the duck house were sampled with a built-in air sampler in Tai’an City, Shandong Province, and the diversity and abundance of microorganisms within the PM were analyzed by macrogenomic and absolute sequence analysis. The results showed that PM2.5 and PM10 concentrations in the house and at downwind points exceeded the short-term (24 h) guideline of the global air quality guidelines (AQG). Macrogenome sequencing showed that the microbial composition of the PM2.5 samples was dominated by bacteria (exceed 85%); a total of 1316 bacterial genera and 110 fungal genera were identified in PM2.5 samples from duck house 1 in winter, which were much higher than the results of amplicon sequencing method reported before, and relatively high levels of the pathogenic bacteria (Coccidioides immitis, etc.) and the conditionally pathogenic bacterium (Rothia nasimurium) were identified at the species level. Absolute quantitative sequencing detected conditionally pathogenic bacteria and allergens at high levels in PM10 samples: Corynebacterium (5.6 × 10<sup>7</sup> copies/g), Aerococcus (9.9 × 10<sup>6</sup> copies/g), Alternaria (3.3 × 10<sup>6</sup> copies/g), and Aspergillus (8.3 × 10<sup>5</sup> copies/g). Moreover, Corynebacterium was the highest content of PM10 in summer and PM2.5 samples in winter, and its pathogenicity and potential threat should be noted. The diversity and relative abundance of microorganisms were similar in the duck house and at the downwind point. The results showed that the microorganisms in the house environment have a greater influence on the air environment around the downwind point and may pose a public health risk to the staff and the surrounding area.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140711414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Indoor Air Quality and Multi-domain Factors on Human Productivity and Physiological Responses: A Comprehensive Review 室内空气质量和多领域因素对人类生产力和生理反应的影响:全面回顾
IF 5.8 2区 环境科学与生态学
Indoor air Pub Date : 2024-04-08 DOI: 10.1155/2024/5584960
Zhipeng Deng, Bing Dong, Xin Guo, Jianshun Zhang
{"title":"Impact of Indoor Air Quality and Multi-domain Factors on Human Productivity and Physiological Responses: A Comprehensive Review","authors":"Zhipeng Deng,&nbsp;Bing Dong,&nbsp;Xin Guo,&nbsp;Jianshun Zhang","doi":"10.1155/2024/5584960","DOIUrl":"10.1155/2024/5584960","url":null,"abstract":"<p>Indoor environmental quality (IEQ) significantly impacts human health, well-being, and productivity. However, a comprehensive and in-depth review of the combined effects of IAQ and other multi-domain factors on human productivity is lacking. There has not been any prior review that encapsulates the impact of multi-domain factors on productivity and physiological responses of occupants. To address this gap, this review paper investigates and highlights the impact of IAQ and multi-domain factors (thermal, visual, and acoustic) on human productivity and occupant well-being in the built environment. The review explores various research methods, including evaluation of human productivity and creativity, data collection, and physiological signal analysis. We also examined the interactions between IAQ and multi-domain factors, as well as strategies for optimizing productivity through integrated building design and smart systems. The key findings from this review reveal that IAQ significantly impacts human productivity and occupant well-being, with interactions between IAQ and other IEQ factors further impacting these effects. Despite advances in the field, there are several limitations and gaps in the current research methods and study designs, including small sample sizes, limited and insufficient experimental design and control, reliance on laboratory or simulated environments, lack of follow-up and long-term data, and lack of robust performance metrics. The review proposes future research directions, including specific applications, and follow-up work to address these limitations and further advance the understanding of IAQ and multi-domain factors in the built environment. The implications of this review for policy and practice include the need for holistic and integrated approaches to IAQ and IEQ management, with a focus on creating healthy and productive indoor environments. This review emphasizes the importance of considering the complex interplay between IAQ and multi-domain factors, as well as the potentials of adopting smart control systems and sustainable design strategies to optimize productivity and occupant well-being in the built environment. By addressing these critical issues, we can enhance the overall quality of life for building occupants and contribute to a more sustainable future.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140730539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One Year Weekly Size-Resolved Air Sampling of SARS-CoV-2 in Hospital Corridors and Relations to the Indoor Environment 医院走廊中 SARS-CoV-2 的一年期每周粒度分辨空气采样及其与室内环境的关系
IF 5.8 2区 环境科学与生态学
Indoor air Pub Date : 2024-03-27 DOI: 10.1155/2024/5578611
Sara Thuresson, Carl-Johan Fraenkel, Sviataslau Sasinovich, Patrik Medstrand, Malin Alsved, Jakob Löndahl
{"title":"One Year Weekly Size-Resolved Air Sampling of SARS-CoV-2 in Hospital Corridors and Relations to the Indoor Environment","authors":"Sara Thuresson,&nbsp;Carl-Johan Fraenkel,&nbsp;Sviataslau Sasinovich,&nbsp;Patrik Medstrand,&nbsp;Malin Alsved,&nbsp;Jakob Löndahl","doi":"10.1155/2024/5578611","DOIUrl":"10.1155/2024/5578611","url":null,"abstract":"<p><i>Background</i>. Airborne SARS-CoV-2 plays a prominent role in COVID-19 transmission. Numerous studies have sampled air from patient rooms, but airborne spread to other hospital areas such as corridors is less investigated. <i>Methods</i>. Size-fractionated aerosol particles were collected weekly, with 12 hours of sampling time daily, in corridors at two infectious disease wards in southern Sweden between March 2020 and May 2021. Samples were analysed with real-time reverse transcription polymerase chain reaction (RT-qPCR) for detection of SARS-CoV-2 RNA. Indoor temperature, relative humidity, and CO<sub>2</sub> concentration were monitored during the sampling period. <i>Results</i>. 20 of the 784 collected samples contained SARS-CoV-2 RNA, although in low concentrations. Positive air samples were found in sizes between 0.14 and 8.1 <i>μ</i>m, but none &gt;8.1 <i>μ</i>m. 45% were found in submicron particles. No clear seasonal pattern was observed among the positive samples. There was no significant difference in the positivity rate of the samples between the two wards. <i>Conclusions</i>. SARS-CoV-2 was only detected in 2.6% of the aerosol samples, which indicates that the spread of airborne virus from patient rooms to the corridor was limited.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140377374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence of a Nonzero Worst-Case ACH for Short-Term Exposure in Ventilated Indoor Spaces 通风室内空间短期暴露的最坏情况 ACH 非零值的存在
IF 5.8 2区 环境科学与生态学
Indoor air Pub Date : 2024-03-26 DOI: 10.1155/2024/6642205
K. A. Krishnaprasad, N. Zgheib, K. Choudhary, M. Y. Ha, C. Y. Choi, K. S. Bang, S. Jang, S. Balachandar
{"title":"Existence of a Nonzero Worst-Case ACH for Short-Term Exposure in Ventilated Indoor Spaces","authors":"K. A. Krishnaprasad,&nbsp;N. Zgheib,&nbsp;K. Choudhary,&nbsp;M. Y. Ha,&nbsp;C. Y. Choi,&nbsp;K. S. Bang,&nbsp;S. Jang,&nbsp;S. Balachandar","doi":"10.1155/2024/6642205","DOIUrl":"https://doi.org/10.1155/2024/6642205","url":null,"abstract":"<p>A well-ventilated room is essential to reduce the risk of airborne transmission. As such, the scientific community sets minimum limits on ventilation with the idea that increased ventilation reduces pathogen concentration and thus reduces the risk of transmission. In contrast, the upper limit on ventilation is usually determined by human comfort and the need to reduce energy consumption. While average pathogen concentration decreases with increased ventilation, local concentration depends on multiple factors and may not follow the same trend, especially within short exposure times over large separation distances. Here, we show through experiments and high-fidelity simulations the existence of a worst-case ventilation where local pathogen concentration increases near the receiving host. This occurs during the type of meetings that were recommended during the pandemic (and in some cases solely authorized) with reduced occupancy adhering to social distancing and short exposure times below 20 minutes. We maintain that for cases of high occupancy and long exposure time, increased ventilation remains necessary.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141164792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pain in Solid and Clean Fuel Using Households 使用固体燃料和清洁燃料家庭的痛苦
IF 5.8 2区 环境科学与生态学
Indoor air Pub Date : 2024-03-25 DOI: 10.1155/2024/6611488
Yi Zhu, Lijin Chen, Honghong Feng, Esthefany Xu Zheng, Yixiang Huang
{"title":"Pain in Solid and Clean Fuel Using Households","authors":"Yi Zhu,&nbsp;Lijin Chen,&nbsp;Honghong Feng,&nbsp;Esthefany Xu Zheng,&nbsp;Yixiang Huang","doi":"10.1155/2024/6611488","DOIUrl":"10.1155/2024/6611488","url":null,"abstract":"<p>Household air pollution from solid cooking fuel use influences multiple health outcomes, but its association with body pain remains poorly understood. This was a longitudinal study of 8880 adults who participated in the China Health and Retirement Longitudinal Study (CHARLS) from 2011 to 2018. Household cooking fuels were extracted from the baseline household questionnaire. Transitions in cooking fuels from 2011 to 2018 were also identified. Body pain status was reported in the three waves of surveys conducted in 2011, 2015, and 2018. The associations between cooking fuel type, fuel transition, and pain site number were examined using generalized estimating equations. Among the 8880 participants, 41.4% (<i>n</i> = 3680) primarily used clean fuels for cooking, and 58.6% (<i>n</i> = 5200) used solid ones at baseline. Cooking with solid fuels was associated with more pain sites (incidence rate ratio (IRR): 1.14; 95% confidence interval (CI): 1.08 to 1.21), but a slower rate of pain sites increases from 2011 to 2018 (IRR = 0.78; 95% CI: 0.71 to 0.86, for 2018 × solid fuels). Compared with those who persistently used clean fuels for cooking, the number of pain sites increased by 10% in participants who transiting from using solid to clean fuels (IRR = 1.10; 95% CI: 1.04 to 1.18), by 21% in those transiting from cooking with clean to solid fuels (IRR = 1.21: 95% CI: 1.08 to 1.35) and by 25% among those persistent using solid fuels for cooking (IRR = 1.25; 95% CI: 1.18 to 1.34). Our findings provided new evidence linking using solid fuels for cooking with more pain sites, but a slower rate of pain sites increases. Public health efforts should focus on fuel transition and take measures to help clean fuels spread.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140383903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a Bioaerosol Sampling Method for Airborne Pathogen Detection with Focus on SARS-CoV-2 开发用于空气传播病原体检测的生物气溶胶采样方法,重点关注 SARS-CoV-2
IF 5.8 2区 环境科学与生态学
Indoor air Pub Date : 2024-03-16 DOI: 10.1155/2024/6638511
Sarah L. Paralovo, Koen Vanden Driessche, Reinoud Cartuyvels, Borislav Lazarov, Erika Vlieghe, Laura Vanstraelen, Rita Smets, Maarten Spruyt, Sabine Kreps, Nady Hufkens, Marianne Stranger
{"title":"Development of a Bioaerosol Sampling Method for Airborne Pathogen Detection with Focus on SARS-CoV-2","authors":"Sarah L. Paralovo,&nbsp;Koen Vanden Driessche,&nbsp;Reinoud Cartuyvels,&nbsp;Borislav Lazarov,&nbsp;Erika Vlieghe,&nbsp;Laura Vanstraelen,&nbsp;Rita Smets,&nbsp;Maarten Spruyt,&nbsp;Sabine Kreps,&nbsp;Nady Hufkens,&nbsp;Marianne Stranger","doi":"10.1155/2024/6638511","DOIUrl":"10.1155/2024/6638511","url":null,"abstract":"<p>As worldwide evidence shows that the predominant transmission route of SARS-CoV-2 and other respiratory pathogens is airborne, the need for suitable methods for the sampling of bioparticles directly from the air is more urgent than ever. The present paper describes the development of a method for the collection of biological aerosols, using a preexisting cyclonic impinger, the Coriolis <i>μ</i>, combined with a lysis buffer and subsequent qPCR analysis of the generated samples in lab. Four phases of method development are described: exploratory, validation, blank tests, and application. The application phase consisted of a field experiment in which the method was simultaneously applied at two daycare facilities. The method achieved a good level of accuracy and reliability in detecting different types of infectious agents in the air, with a global uncertainty of 19.6%. Furthermore, our method allows the simultaneous detection of 26 different respiratory pathogens in air samples, it is relatively simple, and the equipment is easy to use. Additionally, the time to collect a representative sample is short compared to other methods. The method does not cause significant disturbance to those present in the sampled rooms, and it is safe for operators and flexible, meaning it can be used in virtually any environment regardless of use, size, or occupancy. Further research is being developed to allow quantitative analysis of the collected samples and to test the methods’ ability to assess the viability of the microorganisms collected in the sample.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140236151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effectiveness of Air Filters in Allergic Rhinitis: A Systematic Review and Meta-Analysis 空气过滤器对过敏性鼻炎的疗效:系统回顾与元分析
IF 5.8 2区 环境科学与生态学
Indoor air Pub Date : 2024-03-15 DOI: 10.1155/2024/8847667
Ming-Yang Shih, Hsueh-Wen Hsu, Ssu-Yin Chen, Ming-Jang Su, Wei-Cheng Lo, Chiehfeng Chen
{"title":"Effectiveness of Air Filters in Allergic Rhinitis: A Systematic Review and Meta-Analysis","authors":"Ming-Yang Shih,&nbsp;Hsueh-Wen Hsu,&nbsp;Ssu-Yin Chen,&nbsp;Ming-Jang Su,&nbsp;Wei-Cheng Lo,&nbsp;Chiehfeng Chen","doi":"10.1155/2024/8847667","DOIUrl":"10.1155/2024/8847667","url":null,"abstract":"<p>Previous studies have evaluated the effectiveness of air filters in mitigating the symptoms of allergic rhinitis (AR). However, these studies have yielded inconsistent results. This systematic review and meta-analysis was conducted to assess the effectiveness of air filters for patients with AR. For this, we comprehensively searched the PubMed, Embase, and Cochrane Library databases to identify relevant articles. The results are presented in terms of standardized mean difference (SMD) and 95% confidence intervals (CI) values with the fixed-effects model (FEM) and random-effects model (REM). Eight randomized controlled trials were included in our meta-analysis. Of these, three had a parallel design and five had a crossover design. Regarding clinical outcomes, pooled analyses performed using patients’ nighttime and daytime symptom scores revealed SMD values of −0.21 (95% CI: −0.35 to −0.07 (FEM) and −0.35 to −0.08 (REM)) and −0.16 (95% CI: −0.30 to −0.03 (both FEM and REM)), respectively. However, no significant changes were noted in the SMD values when assessing medication use, quality of life (QoL), or peak expiratory flow rate (PEFR). In conclusion, air filters may help alleviate symptoms associated with AR; however, their effects on medication use, QoL, and PEFR appear to be limited. This systemic review and meta-analysis is registered with CRD42022380560.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140239984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A New Model for Building Energy Modeling and Management Using Predictive Analytics: Partitioned Hierarchical Multitask Regression (PHMR) 使用预测分析的建筑能源建模和管理新模型:分区分层多任务回归(PHMR)
IF 5.8 2区 环境科学与生态学
Indoor air Pub Date : 2024-03-11 DOI: 10.1155/2024/5595459
Shuluo Ning, Hyunsoo Yoon
{"title":"A New Model for Building Energy Modeling and Management Using Predictive Analytics: Partitioned Hierarchical Multitask Regression (PHMR)","authors":"Shuluo Ning,&nbsp;Hyunsoo Yoon","doi":"10.1155/2024/5595459","DOIUrl":"10.1155/2024/5595459","url":null,"abstract":"<p>Buildings are major consumers of energy, accounting for a significant proportion of total energy use worldwide. This substantial energy consumption not only leads to increased operational costs but also contributes to environmental concerns such as greenhouse gas emissions. In the United States, building energy consumption accounts for about 40% of total energy use, highlighting the importance of efficient energy management. Therefore, accurate prediction of energy usage in buildings is crucial. However, accurate prediction of building energy consumption remains a challenge due to the intricate interaction of indoor and outdoor variables. This study introduces the Partitioned Hierarchical Multitask Regression (PHMR), an innovative model integrating recursive partition regression (RPR) with multitask learning (hierML). PHMR adeptly predicts building energy consumption by integrating both indoor factors, such as building design and operational variables, and outdoor environmental influences. Rigorous simulation studies illustrate PHMR’s efficacy. It outperforms traditional single-predictor regression models, achieving a 32.88% to 41.80% higher prediction accuracy, especially in scenarios with limited training data. This highlights PHMR’s robustness and adaptability. The practical application of PHMR in managing a modular house’s Heating, Ventilation, and Air Conditioning (HVAC) system in Spain resulted in a 37% improvement in prediction accuracy. This significant efficiency gain is evidenced by a high Pearson correlation coefficient (0.8) between PHMR’s predictions and actual energy consumption. PHMR not only offers precise predictions for energy consumption but also facilitates operational cost reductions, thereby enhancing sustainability in building energy management. Its application in a real-world setting demonstrates the model’s potential as a valuable tool for architects, engineers, and facility managers in designing and maintaining energy-efficient buildings. The model’s integration of comprehensive data analysis with domain-specific knowledge positions it as a crucial asset in advancing sustainable energy practices in the building sector.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140252844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting Personal Exposure to PM2.5 Using Different Determinants and Machine Learning Algorithms in Two Megacities, China 使用不同的决定因素和机器学习算法预测中国两个特大城市的 PM2.5 个人暴露量
IF 5.8 2区 环境科学与生态学
Indoor air Pub Date : 2024-03-08 DOI: 10.1155/2024/5589891
Na Li, Yunpu Li, Dongqun Xu, Zhe Liu, Ning Li, Ryan Chartier, Junrui Chang, Qin Wang, Chunyu Xu
{"title":"Predicting Personal Exposure to PM2.5 Using Different Determinants and Machine Learning Algorithms in Two Megacities, China","authors":"Na Li,&nbsp;Yunpu Li,&nbsp;Dongqun Xu,&nbsp;Zhe Liu,&nbsp;Ning Li,&nbsp;Ryan Chartier,&nbsp;Junrui Chang,&nbsp;Qin Wang,&nbsp;Chunyu Xu","doi":"10.1155/2024/5589891","DOIUrl":"10.1155/2024/5589891","url":null,"abstract":"<p>The primary aim of this study is to explore the utility of machine learning algorithms for predicting personal PM<sub>2.5</sub> exposures of elderly participants and to evaluate the effect of individual variables on model performance. Personal PM<sub>2.5</sub> was measured on five consecutive days across seasons in 66 retired adults in Beijing (BJ) and Nanjing (NJ), China. The potential predictors were extracted from routine monitoring data (ambient PM<sub>2.5</sub> concentrations and meteorological factors), basic questionnaires (personal and household characteristics), and time-activity diary (TAD). Prediction models were developed based on either traditional multiple linear regression (MLR) or five advanced machine learning methods. Our results revealed that personal PM<sub>2.5</sub> exposures were well predicted by both MLR and machine learning models with predictors extracted from routine monitoring data, which was indicated by the high nested cross-validation (CV) <i>R</i><sup>2</sup> ranging from 0.76 to 0.88. The addition of predictors from either the questionnaire or TAD did not improve predictive accuracy for all algorithms. The ambient PM<sub>2.5</sub> concentrations were the most important predictor. Overall, the random forest, support vector machine, and extreme gradient boosting algorithms outperformed the reference MLR method. Compared with the traditional MLR approach, the CV <i>R</i><sup>2</sup> of the RF model increased up to 7% (from 0.82 ± 0.13 to 0.88 ± 0.10), while the RMSE reduced up to 18% (from 19.8 ± 5.4 to 16.3 ± 4.5) in BJ.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140258135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-Term Characterization of Indoor Air Quality at a Research Area Building: Comparing Reference Instruments and Low-Cost Sensors 研究区大楼室内空气质量的长期特征描述:参考仪器与低成本传感器的比较
IF 5.8 2区 环境科学与生态学
Indoor air Pub Date : 2024-02-23 DOI: 10.1155/2024/8799498
Mariarosaria Calvello, Francesca Agresti, Francesco Esposito, Giulia Pavese
{"title":"Long-Term Characterization of Indoor Air Quality at a Research Area Building: Comparing Reference Instruments and Low-Cost Sensors","authors":"Mariarosaria Calvello,&nbsp;Francesca Agresti,&nbsp;Francesco Esposito,&nbsp;Giulia Pavese","doi":"10.1155/2024/8799498","DOIUrl":"10.1155/2024/8799498","url":null,"abstract":"<p>Indoor particle number size distribution (0.3-10 <i>μ</i>m), equivalent black carbon (eBC), and Ångström absorption exponent (AAE) data were collected in real conditions, over a ten-month period at a research area building, in a semirural site, to characterize indoor aerosol loading. Additionally, during the campaign, emissions from four indoor sources commonly used at the site (incense, traditional cigarettes, electronic cigarettes, and heat-not-burn products) were studied during short-term experiments with the support of ultrafine particle (UFP) monitoring. Two particle low-cost sensors (PM LCS), Sensirion SPS30 (0.3-10 <i>μ</i>m), were evaluated in the long-term campaign and during fast emission processes, to assess their accuracy and reliability. Penetration and infiltration of both fine and coarse particles from outdoor traffic, domestic heating, and dust resuspension were inferred as the main sources of indoor aerosols on a long-term basis. Moreover, long-range transported dust aerosols were found to influence indoor coarse number concentration. Among the source events, heat-not-burn (HNB) product resulted in the lowest effect on indoor air quality, whereas the highest AAE values from incense and traditional cigarettes suggest the brown carbon (BrC) production. The highest emission of UFP was caused by electronic cigarettes (e-cig), which spanned particles from the ultrafine to the coarse fractions. This was likely due to the release of metal and silicate from the coil. Analysis of number size distributions of the four experiments revealed the emission of fine particles (0.3-1 <i>μ</i>m) and super micron particles. SPS30s performance was satisfactory in terms of accuracy, precision, and durability, indicating that these devices are suitable for monitoring indoor air quality. Additionally, the two PM LCS were able to detect all simulated fast emission sources.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140437291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信