Indoor air最新文献

筛选
英文 中文
Objective and Subjective Indoor Air Quality and Thermal Comfort Indices: Characterization of Mediterranean Climate Archetypal Schools After the COVID-19 Pandemic 客观和主观室内空气质量及热舒适度指数:COVID-19大流行后地中海气候典型学校的特征描述
IF 4.3 2区 环境科学与生态学
Indoor air Pub Date : 2024-10-26 DOI: 10.1155/2024/2456666
Jesús Llanos-Jiménez, Rafael Suárez, Alicia Alonso, Juan José Sendra
{"title":"Objective and Subjective Indoor Air Quality and Thermal Comfort Indices: Characterization of Mediterranean Climate Archetypal Schools After the COVID-19 Pandemic","authors":"Jesús Llanos-Jiménez,&nbsp;Rafael Suárez,&nbsp;Alicia Alonso,&nbsp;Juan José Sendra","doi":"10.1155/2024/2456666","DOIUrl":"https://doi.org/10.1155/2024/2456666","url":null,"abstract":"<p>The COVID-19 pandemic has prompted renewed interest in indoor air quality (IAQ). Poor ventilation habits, energy obsolescence, and the lack of cooling equipment in schools, combined with increasing temperatures due to climate change, are leading to situations of thermal stress in classrooms. Changes in school operation, following the COVID pandemic, have made it necessary to establish an accurate understanding of the current situation. This research work presents an assessment of winter and summer IAQ and thermal comfort (TC) for a sample of 7 archetypal secondary schools in 5 Mediterranean climate variants in southern Spain in a postpandemic situation. IAQ was assessed through CO<sub>2</sub>, PM2.5, PM10, and CH<sub>2</sub>O, while static and adaptive models were used in the case of TC. Surveys were also used to assess both of these. The main novelty is the use of IAPI (indoor air pollution index) and IDI (indoor dissatisfaction index) objective global dimensionless indices to optimize the joint assessment of both variables. Poor objective IAQ results, especially for CO<sub>2</sub> and PM2.5, were obtained for both seasons and all climate variants. Global IAPI is between 6.2 and 8.1, with an index of 10 considered unacceptable, while time percentages exceeding established limits are more variable in winter, ranging from 7% to 31.9%, than in summer, ranging from 14.3% to 20.9%. TC objective results varied, and the summer percentage of hours outside the comfort bands reached 40%–47% due to excess heat in the hottest regions. This discomfort was reported by 58.3% of users.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2456666","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Holographic Air-Quality Monitor (HAM) 全息空气质量监测仪(HAM)
IF 4.3 2区 环境科学与生态学
Indoor air Pub Date : 2024-10-23 DOI: 10.1155/2024/2210837
Nicholas Bravo-Frank, Lei Feng, Jiarong Hong
{"title":"Holographic Air-Quality Monitor (HAM)","authors":"Nicholas Bravo-Frank,&nbsp;Lei Feng,&nbsp;Jiarong Hong","doi":"10.1155/2024/2210837","DOIUrl":"https://doi.org/10.1155/2024/2210837","url":null,"abstract":"<p>We introduce the holographic air-quality monitor (HAM) system, uniquely tailored for monitoring large particulate matter (PM) over 10 <i>μ</i>m in diameter—particles critical for disease transmission and public health but overlooked by most commercial PM sensors. The HAM system utilizes a lensless digital inline holography (DIH) sensor combined with a deep learning model, enabling real-time detection of PMs with greater than 97% true positive rate at less than 0.6% false positive rate and analysis of PMs by size and morphology at a sampling rate of 26 L/min for a wide range of particle concentrations up to 4000 particles/L. Such throughput not only significantly outperforms traditional imaging-based sensors but also rivals some lower-fidelity, nonimaging sensors. Additionally, the HAM system is equipped with additional sensors for smaller PMs and various air quality conditions, ensuring a comprehensive assessment of indoor air quality. The performance of the DIH sensor within the HAM system was evaluated through comparison with brightfield microscopy, showing high concordance in size and morphology measurements. The efficacy of the DIH sensor was also demonstrated in two 2-h experiments under different environments simulating practical conditions, with one involving distinct PM-generating events. These tests highlighted the HAM system’s advanced capability to differentiate PM events from background noise and its exceptional sensitivity to irregular, large-sized PMs of low concentration.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2210837","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Indoor Air Quality: Predicting and Comparing Protective Behaviors in Germany and Portugal 室内空气质量:预测和比较德国和葡萄牙的保护行为
IF 4.3 2区 环境科学与生态学
Indoor air Pub Date : 2024-10-23 DOI: 10.1155/2024/3006342
Inês Veiga, Mijail Naranjo-Zolotov, Ricardo Martins, Tiago Oliveira, Stylianos Karatzas
{"title":"Indoor Air Quality: Predicting and Comparing Protective Behaviors in Germany and Portugal","authors":"Inês Veiga,&nbsp;Mijail Naranjo-Zolotov,&nbsp;Ricardo Martins,&nbsp;Tiago Oliveira,&nbsp;Stylianos Karatzas","doi":"10.1155/2024/3006342","DOIUrl":"https://doi.org/10.1155/2024/3006342","url":null,"abstract":"<p>This study investigates the adoption of indoor air quality (IAQ) management technologies in Germany and Portugal, focusing on the common and differentiating factors influencing individuals’ motivations and the perceived health impacts of these technologies. Utilizing a model based on the protection motivation theory, we surveyed 800 participants (400 from each country) to understand how their perceptions of the risks associated with poor IAQ and their evaluations of the effectiveness and costs of technologies like air purifiers and sensors drive the adoption intention of these technologies and well-being of individuals. To estimate the complex relationships in our model, we employed partial least squares structural equation modeling (PLS-SEM). Our model explains nearly 50% of the variance in well-being for both countries. The results revealed significant differences in the factors driving technology adoption: Germans are primarily motivated by individual efficacy and personal responsibility with the people close to them. Regarding the similarities, participants from both countries value the technology’s effectiveness in improving IAQ and do not see being vulnerable to health issues derived from poor IAQ as a motivator. These insights highlight the need for strategies that are tailored to specific cultural and national contexts to promote the adoption of IAQ management technologies, aiming to enhance IAQ and public health outcomes.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/3006342","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Respiratory Simulator for the Study of Pathogen Transmission in Indoor Environments 用于研究室内环境中病原体传播的呼吸模拟器
IF 4.3 2区 环境科学与生态学
Indoor air Pub Date : 2024-10-19 DOI: 10.1155/2024/8368202
Claudio Mucignat, Bernhard Roth, Ivan Lunati
{"title":"A Respiratory Simulator for the Study of Pathogen Transmission in Indoor Environments","authors":"Claudio Mucignat,&nbsp;Bernhard Roth,&nbsp;Ivan Lunati","doi":"10.1155/2024/8368202","DOIUrl":"https://doi.org/10.1155/2024/8368202","url":null,"abstract":"<p>Detailed investigation of pathogen transmission by respiratory droplets requires extensive experimental datasets with high spatial–temporal resolution in a wide range of ambient conditions. Respiratory simulators are attractive tools for those measurements, because they improve repeatability, endurance, and control of experimental conditions with respect to studies on human subjects. They also enable the use of powerful experimental techniques, which may raise health concerns if employed on humans. In this paper, we design and present a respiratory simulator, which is capable of accurately reproducing physiological flow rate profiles and allows the investigation of the spatial and temporal features of the exhaust flow by background-oriented schlieren (BOS) and particle image velocimetry (PIV). We use laser interferometry and high-magnification shadowgraphy to verify the size distributions of the emitted droplets, and we quantify the evolution of the droplet concentration during cough events by Mie scattering analysis. The experiments demonstrate the ability of the respiratory simulator to generate highly reproducible cough events with precise and controllable droplet size distributions over a wide range of flow rates.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8368202","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microclimate Assessment in a 19th-Century Heritage Building From Romania 罗马尼亚 19 世纪遗产建筑的微气候评估
IF 4.3 2区 环境科学与生态学
Indoor air Pub Date : 2024-10-12 DOI: 10.1155/2024/2989136
Tudor Caciora, Dorina Camelia Ilies, Monica Costea, Lucian Blaga, Zharas Berdenov, Alexandru Ilies, Thowayeb H. Hassan, Ana Cornelia Peres, Bahodirhon Safarov, Ioana Josan, Ioan-Cristian Noje, Olivier Dehoorne, Vasile Grama, Stefan Baias
{"title":"Microclimate Assessment in a 19th-Century Heritage Building From Romania","authors":"Tudor Caciora,&nbsp;Dorina Camelia Ilies,&nbsp;Monica Costea,&nbsp;Lucian Blaga,&nbsp;Zharas Berdenov,&nbsp;Alexandru Ilies,&nbsp;Thowayeb H. Hassan,&nbsp;Ana Cornelia Peres,&nbsp;Bahodirhon Safarov,&nbsp;Ioana Josan,&nbsp;Ioan-Cristian Noje,&nbsp;Olivier Dehoorne,&nbsp;Vasile Grama,&nbsp;Stefan Baias","doi":"10.1155/2024/2989136","DOIUrl":"https://doi.org/10.1155/2024/2989136","url":null,"abstract":"<p>The quality of the internal microclimate is a very important issue nowadays, considering that people in developed societies spend a good part of their day inside buildings and means of transport. But the poor quality of indoor air has a double effect; on the one hand, it can harm human health, and on the other hand, it can cause the degradation of materials. Thus, the current study considers the potential influence of a number of 20 pollutants on the exhibits, visitors, and employees of a synagogue that is over 140 years old in the Municipality of Oradea (Romania), which today is included in the list of historical monuments and is open to be visited. The monitoring period consisted of 9 months, during which parameters such as temperature, relative humidity, CO concentration, light intensity, concentration of particulate matter, and other pollutants were monitored. All the obtained values were then reported to the international standards in force for each indicator, both regarding the potential for human health and the integrity of the exhibits. The results indicate that the values of most pollutants respect the allowed thresholds, with more or less permitted exceptions. The most problematic are the values of temperature, relative humidity, HCHO, and VOC, which substantially exceed the allowed limits and vary a considerable difference. This can induce additional stress on the exhibits, leading over time to damage and premature aging; in terms of human health, the indoor microclimate can, in rare cases, cause discomfort associated with headaches, dizziness, and irritation, but the potential to cause persistent ailments is quite low. To maintain a clean internal microclimate, preventive conservation through the continuous monitoring of internal parameters as well as the establishment of long-term strategies to stabilize the values of pollutants are necessary actions.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2989136","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Invisible Threats in Daily Life: Evaluating VOCs, Metals, and Hazards of Household Cleaning Products by Type 日常生活中的隐形威胁:按类型评估家用清洁产品的挥发性有机化合物、金属和危害
IF 4.3 2区 环境科学与生态学
Indoor air Pub Date : 2024-10-12 DOI: 10.1155/2024/2125845
Minjung Kim, Chungsik Yoon, Jeongyeon Park, Kiyoung Lee, Kyung-Duk Zoh, Miyoung Lim, Soyeon Lee
{"title":"Invisible Threats in Daily Life: Evaluating VOCs, Metals, and Hazards of Household Cleaning Products by Type","authors":"Minjung Kim,&nbsp;Chungsik Yoon,&nbsp;Jeongyeon Park,&nbsp;Kiyoung Lee,&nbsp;Kyung-Duk Zoh,&nbsp;Miyoung Lim,&nbsp;Soyeon Lee","doi":"10.1155/2024/2125845","DOIUrl":"https://doi.org/10.1155/2024/2125845","url":null,"abstract":"<p>Household cleaning products (HCPs) are widely used; however, their airborne emissions and hazards have not been thoroughly studied. This study is aimed at evaluating the concentrations of volatile organic compounds (VOCs) and metals present in HCPs and the hazards associated with them. A total of 23 VOCs and 19 metals from 75 HCPs (four spray types and 14 intended usage categories) were analyzed using gas chromatography–mass spectrometry and inductively coupled plasma-mass spectrometry/optical emission spectroscopy. The largest number of VOCs (21 of 23 ingredients) were detected in spray-type and had the highest frequency (176). d-Limonene was found in almost all products (69 of 75) and had the highest concentration. Benzene, a carcinogen, was detected in six spray-type products. Only three of the 23 VOCs—d-limonene, ethyl acetate, and heptane—appeared in three, one, and one product labels, respectively. Eight of 19 metals were primarily detected in spray-type and spray foam-type products, with sodium, magnesium, and calcium as the main components. Nickel, another carcinogen, was detected in both spray-type and trigger-type products. Caution is required when using spray-type products, especially sticker/glue/tar/oil removers containing benzene and nickel. The study discovered that the VOCs and metals varied by their spray type and lacked sufficient harmful information.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2125845","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Distance, Temperature, and Relative Humidity on the Irradiance of Ultraviolet-C Germicidal Lamp: A Quantitative Study 距离、温度和相对湿度对紫外线 C 型杀菌灯辐照度的影响:定量研究
IF 4.3 2区 环境科学与生态学
Indoor air Pub Date : 2024-10-11 DOI: 10.1155/2024/1951792
Yu Wu, Yuqi Wang, Jinyang Liu, Xinyang Xu, Youwen Song, Xiaorong Zhang, Lili Jiang, Peng Chen
{"title":"Effects of Distance, Temperature, and Relative Humidity on the Irradiance of Ultraviolet-C Germicidal Lamp: A Quantitative Study","authors":"Yu Wu,&nbsp;Yuqi Wang,&nbsp;Jinyang Liu,&nbsp;Xinyang Xu,&nbsp;Youwen Song,&nbsp;Xiaorong Zhang,&nbsp;Lili Jiang,&nbsp;Peng Chen","doi":"10.1155/2024/1951792","DOIUrl":"https://doi.org/10.1155/2024/1951792","url":null,"abstract":"<p>Ultraviolet germicidal irradiation (UVGI) as an engineering control against pathogenic microbes necessitates a clear understanding of operational parameters and environmental effects on inactivation rates. Here, we investigated the variation laws of ultraviolet-C (UV-C) irradiance under the influence of distance, ambient conditions of temperature, and relative humidity (RH) in a dark chamber using 30-W low-pressure mercury lamps, and all data were analyzed with curve fitting methods. UV-C irradiances in each plane were measured as the distance adjusting between 0.5 and 1.2 m, and a threshold of 70 <i>μ</i>W/cm<sup>2</sup> was utilized to calculate the effective irradiation area. For the temperature and RH, UV-C irradiances were measured at 1 m perpendicular from the lamp axis at the lamp midpoint, with the ambient temperature increasing from 15.5°C to 40°C and RH adjusting from 10% to 97%. Results showed that the UV-C irradiance and effective irradiation area exhibited a notable decrease as the distance increased, both corresponded to polynomial 2nd order fits. The UV-C lamps operate at maximum efficiency at 20°C. Temperature above or below the optimum value will decrease UV output, especially when the ambient temperature exceeds 38°C and the irradiance decreases by 16% compared to the observed maximum. However, the impact of RH on radiant power is negligible with the UV-C irradiance maintaining an overall steady state (84–91 <i>μ</i>W/cm<sup>2</sup>) in the 10%–97% RH range. The use of the measurement and modeling techniques demonstrated in this study may help understand various ambient conditions that influence the irradiance of UV-C and improve reliability and working performance of UVGI systems through better design.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/1951792","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of the Emissions of Vehicles Ahead on In-Car Exposure to Traffic-Related Air Pollutants: A Multiple Statistical Analysis Approach 前方车辆的排放对车内接触交通相关空气污染物的影响:多重统计分析方法
IF 4.3 2区 环境科学与生态学
Indoor air Pub Date : 2024-10-08 DOI: 10.1155/2024/6377126
Davide Campagnolo, Andrea Cattaneo, Simona Iodice, Chiara Favero, Simone Lioi, Luca Boniardi, Francesca Borghi, Giacomo Fanti, Marta Keller, Sabrina Rovelli, Carolina Zellino, Giovanni De Vito, Andrea Spinazzè, Silvia Fustinoni, Valentina Bollati, Domenico M. Cavallo
{"title":"Effects of the Emissions of Vehicles Ahead on In-Car Exposure to Traffic-Related Air Pollutants: A Multiple Statistical Analysis Approach","authors":"Davide Campagnolo,&nbsp;Andrea Cattaneo,&nbsp;Simona Iodice,&nbsp;Chiara Favero,&nbsp;Simone Lioi,&nbsp;Luca Boniardi,&nbsp;Francesca Borghi,&nbsp;Giacomo Fanti,&nbsp;Marta Keller,&nbsp;Sabrina Rovelli,&nbsp;Carolina Zellino,&nbsp;Giovanni De Vito,&nbsp;Andrea Spinazzè,&nbsp;Silvia Fustinoni,&nbsp;Valentina Bollati,&nbsp;Domenico M. Cavallo","doi":"10.1155/2024/6377126","DOIUrl":"https://doi.org/10.1155/2024/6377126","url":null,"abstract":"<p>Traffic-related air pollutants inside vehicle cabins are often extremely high compared to background pollution concentrations. The study of the determinants of these concentrations is particularly important for professional drivers and commuters who spend long periods in vehicles. This study is aimed at identifying and quantifying the effect of several exposure determinants on carbon monoxide (CO), equivalent black carbon (eBC), two particulate matter (PM) fractions (PM<sub>0.3–1</sub> and PM<sub>1–2.5</sub>), and ultrafine particle (UFP) concentrations inside a passenger car cabin. The novelty of this work consists in examining the effects of the emissions of the first vehicle ahead (henceforth called “leading vehicle”) on pollutant concentrations inside the cabin of the following vehicle (i.e., the car that was equipped with the air monitoring devices), with particular emphasis on the role of the leading vehicle characteristics (e.g., emission reduction technologies). The real-time instrumentation was placed inside the cabin of a petrol passenger car, which was driven by the same operator two times per day on the same route in real driving conditions. The in-cabin ventilation settings were set as follows: windows closed, air conditioning and recirculation modes off, and the fanned ventilation system on. The measurements were conducted over a total of 10 weekdays during two different seasons (i.e., summer and autumn). A video camera fixed to the windscreen was used to retrieve information about traffic conditions and leading vehicle characteristics through careful video analysis. The associations among pollutant concentrations and their potential determinants were evaluated using generalized estimating equation univariate and multiple models. The results confirmed the significant impact of several well-known determinants such as seasonality, microclimatic parameters, traffic jam situations, and route characteristics. Moreover, the outcomes shed light on the key role of leading vehicle emissions as determinant factors of the pollutant concentrations inside car cabins. Indeed, in the tested cabin ventilation conditions, it was demonstrated that in-cabin pollutant concentrations were significantly higher with leading vehicles ahead (from +14.6% to +67.5%) compared to empty road conditions, even though the introduction of newer technologies with better emissions reduction helped mitigate their effect. Additionally, diesel-fuelled leading vehicles compared to petrol-fuelled leading vehicles were impactful on in-cabin CO (−7.2%) and eBC (+45.3%) concentrations. An important effect (+30.4%) on in-vehicle PM<sub>1–2.5</sub> concentrations was found with heavy-duty compared to light-duty leading vehicles. Finally, this research pointed out that road-scale factors are more important determinant factors of in-cabin concentrations than local pollution and meteorological conditions.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6377126","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ceiling-Mounted CO2 Sensing: Effect of Location and Stratification Temperature 吸顶式二氧化碳传感:位置和分层温度的影响
IF 4.3 2区 环境科学与生态学
Indoor air Pub Date : 2024-09-27 DOI: 10.1155/2024/1840021
Tewe Heemstra, Marc van der Schans, Joanna Gibas, Jean-Paul M. G. Linnartz, Roger Delnoij
{"title":"Ceiling-Mounted CO2 Sensing: Effect of Location and Stratification Temperature","authors":"Tewe Heemstra,&nbsp;Marc van der Schans,&nbsp;Joanna Gibas,&nbsp;Jean-Paul M. G. Linnartz,&nbsp;Roger Delnoij","doi":"10.1155/2024/1840021","DOIUrl":"https://doi.org/10.1155/2024/1840021","url":null,"abstract":"<p>Carbon dioxide is an important parameter for indoor air quality (IAQ) monitoring and demand controlled ventilation (DCV). Usually, CO<sub>2</sub> sensors are wall-mounted at 0.9–1.8 m (3–6 ft) height as prescribed by LEED, although ASHRAE standards seemed to relax this requirement. In this work, we investigate whether positioning these sensors in the ceiling is effective and advantageous. We studied CO<sub>2</sub>-level measurements for HVAC control in configurations with mixing ventilation and found that CO<sub>2</sub> from human exhalations experiences buoyancy from several factors. We calculated buoyancy from air properties, and we introduced the notion of “<i>stratification temperature</i>” for exhaled air. By simulation, we test the sensitivity to temperature, and we conducted in situ in vivo measurements to acquire more detailed insights in the feasibility of ceiling sensor positions. <i>Buoyancy calculations</i> show that in exhaled air, the positive buoyancy of H<sub>2</sub>O approximately compensates for the negative buoyancy of CO<sub>2</sub>, so that thermal buoyancy is the most dominant factor. Exhaled air, containing CO<sub>2</sub> to be measured, will rise towards a ceiling that has a temperature below the stratification temperature. Computational fluid dynamics (CFD) simulations of a small office space indicate that this can also be the case in the presence of air flows induced by a mechanical ventilation system. The <i>measurement results</i> support that using “<i>properly mounted</i>” CO<sub>2</sub> sensors in the ceiling gives lower variability in CO<sub>2</sub> measurements and faster response than wall-mounted sensors and yields slightly higher values than wall sensors. Our results highlight the need to update the standards and regulations for sensing CO<sub>2</sub> to include ceiling-mounted sensors.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/1840021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mental Fatigue Under the Thermoneutral Environment in Buildings: Effects of the Constant and Altered Workload Sequences 建筑物热平衡环境下的精神疲劳:恒定和变化的工作量序列的影响
IF 4.3 2区 环境科学与生态学
Indoor air Pub Date : 2024-09-24 DOI: 10.1155/2024/2210991
Hui Zhu, Le Ma, Fan Zhang, Duo Yang, Masanari Ukai, Songtao Hu
{"title":"Mental Fatigue Under the Thermoneutral Environment in Buildings: Effects of the Constant and Altered Workload Sequences","authors":"Hui Zhu,&nbsp;Le Ma,&nbsp;Fan Zhang,&nbsp;Duo Yang,&nbsp;Masanari Ukai,&nbsp;Songtao Hu","doi":"10.1155/2024/2210991","DOIUrl":"https://doi.org/10.1155/2024/2210991","url":null,"abstract":"<p>In order to explore the effects of constant and altered workload sequences on mental fatigue in a thermoneutral environment, experiments and surveys were carried out in this study. n-back tasks were used to design different workload sequences. Fifteen healthy right-handed males were required to experience three different workload sequences for 30 min, respectively, including a constant workload (2-back task) and 2 altered workload sequences that contained an elevating workload sequence (1-2-3-back tasks) and a reducing workload sequence (3-2-1-back tasks). The PANAS, VAS-F, and NASA-TLX scales were selected to investigate changes in the mood, the perceived fatigue, and the perceived workload. Meanwhile, the skin temperature during these three workload sequences was continuously collected. Results from the NASA-TLX scale indicated that no significant difference in total workload was observed among all three workload sequences. Meanwhile, results from the VAS-F scale showed that no significant changes in self-reported mental fatigue were observed among these three workload sequences, which meant that mental fatigue was only related to the total workload. However, self-reported “energy” from the VAS-F scale did not reduce significantly during the reducing workload sequence, which meant that the reducing workload sequence could conserve more “energy” than that of the elevating and constant workload sequences. Furthermore, both positive and negative moods changed significantly under the constant workload sequence (2-back task), but they did not show much changes under altered workloads, which meant that the altered workload sequence could attenuate the mood deterioration. What is more, the mental demand, physical demand, temporal demand, effort, and the total workload increased significantly after both the constant workload and elevating workload sequence, but no significant changes in all these six items of the NASA-TLX scale were observed under the reducing workload sequence. Finally, the mean skin temperature under the constant workload sequence was lower than that under the altered workload sequences (<i>p</i> &gt; 0.05), but significant changes in skin temperature at the left hand and neck were only observed between the constant and reducing workload sequences. In conclusion, constant and altered workload sequences contributed equally to the mental fatigue in a thermoneutral environment, but the differences in workload sequence produced some differences in mood, energy, and mental demand, which would affect the working performance. Findings of this study provided implications for the proper planning, assignment, and management of tasks in real working settings.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2210991","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信