{"title":"Effects of differently shaped textures on the tribological properties of static and dynamic pressure thrust bearings and multiobjective optimization","authors":"Xiaodong Yu, Guangqiang Shi, Xinyi Yang","doi":"10.1108/ilt-03-2024-0104","DOIUrl":"https://doi.org/10.1108/ilt-03-2024-0104","url":null,"abstract":"<h3>Purpose</h3>\u0000<p>The purpose of this study is to evaluate three types of textures designed to enhance the tribological performance of static and dynamic pressure thrust bearings.</p><!--/ Abstract__block -->\u0000<h3>Design/methodology/approach</h3>\u0000<p>To explore the effects of different types of textures on tribological performance, the Reynolds equation is modified using lubrication theory and computational fluid dynamics methods while considering the influence of cavitation and turbulence on the physical field. In addition, the tribological performance is optimized through an improved selection algorithm based on Pareto envelope (PESA).</p><!--/ Abstract__block -->\u0000<h3>Findings</h3>\u0000<p>The results indicate that textured thrust bearings exhibit superior tribological performance compared to untextured ones. The circular texture outperforms other textures in terms of load-bearing and friction performance, with improvements of approximately 28.8% and 18.9%, respectively. In addition, the triangular texture exhibits the most significant temperature improvement, with a reduction of approximately 1.93%.</p><!--/ Abstract__block -->\u0000<h3>Originality/value</h3>\u0000<p>The study proposes three types of textures and evaluates the friction performance of thrust bearings by modifying the Reynolds equation. In addition, the optimal texture design is determined using an improved selection algorithm based on PESA.</p><!--/ Abstract__block -->","PeriodicalId":13523,"journal":{"name":"Industrial Lubrication and Tribology","volume":"325 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141777439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dongya Zhang, Yanping Gao, Pengju Wu, Yanchao Zhang, Liping Wang
{"title":"Study on the lubrication performance of the pitcher plant–like textured surface with various parameters","authors":"Dongya Zhang, Yanping Gao, Pengju Wu, Yanchao Zhang, Liping Wang","doi":"10.1108/ilt-04-2024-0119","DOIUrl":"https://doi.org/10.1108/ilt-04-2024-0119","url":null,"abstract":"<h3>Purpose</h3>\u0000<p>This paper aims to enhance lubrication performance of the pitcher plant–like textured surface with various parameters.</p><!--/ Abstract__block -->\u0000<h3>Design/methodology/approach</h3>\u0000<p>A pitcher plant–like structure surface is fabricated on the copper alloy, and the lubrication performance of the pitcher plant–like structure with various parameters is evaluated. In addition, the pressure distribution and oil film load capacity of the pitcher plant–like surface are simulated based on Navier–Stokes equations.</p><!--/ Abstract__block -->\u0000<h3>Findings</h3>\u0000<p>When the direction of motion aligns with the pitcher plant–like structure, the friction coefficient remains lower than that of the nontextured surface, and it exhibits a decreasing trend with the increasing of the texture width and spacing distance; the lowest friction coefficient (0.04) is achieved with <em>B</em> = 0.3 mm, <em>L</em> = 1.0 mm and <em>θ</em> = 45°, marking a 75% reduction compared to the nontextured surface. Simulation results demonstrate that with the increase in texture width and spacing distance, the oil film load-bearing capacity demonstrates an increasing trend.</p><!--/ Abstract__block -->\u0000<h3>Originality/value</h3>\u0000<p>Bionic pitcher plants are prepared on the copper alloy to improve the lubrication performance and wear resistance.</p><!--/ Abstract__block -->\u0000<h3>Peer review</h3>\u0000<p>The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2024-0119/</p><!--/ Abstract__block -->","PeriodicalId":13523,"journal":{"name":"Industrial Lubrication and Tribology","volume":"268 10 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141743352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Friction and wear properties of textured surface for bearing steel with mango-shaped micro geometries","authors":"Qiang Xiao, Liu Yi-Cong, Yue-Peng Zhou, Zhi-Hong Wang, Sui-Xin Fan, Jun-Hu Meng, Junde Guo","doi":"10.1108/ilt-02-2024-0039","DOIUrl":"https://doi.org/10.1108/ilt-02-2024-0039","url":null,"abstract":"<h3>Purpose</h3>\u0000<p>Given the current friction and wear challenges faced by automobile parts and bearings, this study aims to identify a novel texture for creating anti-friction and wear-resistant surfaces. This includes detailing the preparation process with the objective of mitigating friction and wear in working conditions.</p><!--/ Abstract__block -->\u0000<h3>Design/methodology/approach</h3>\u0000<p>Femtosecond laser technology was used to create a mango-shaped texture on the surface of GCr15 bearing steel. The optimized processing technology of the texture surface was obtained through adjusting the laser scanning speed. The tribological behavior of the laser-textured surface was investigated using a reciprocating tribometer.</p><!--/ Abstract__block -->\u0000<h3>Findings</h3>\u0000<p>The friction coefficient of the mango-shaped texture surface is 25% lower than that of the conventional surface, this can be attributed to the reduced contact area between the friction ball and the micro-textured surface, leading to stress concentration at the extrusion edge and a larger stress distribution area on the contact part of the ball and disk compared to the conventional surface and the function of the micro-texture in storing wear chips during the sliding process, thereby reducing secondary wear.</p><!--/ Abstract__block -->\u0000<h3>Originality/value</h3>\u0000<p>The mango-shaped textured surface in this study demonstrates effective solutions for some of the friction and wear issues, offering significant benefits for equipment operation under light load conditions.</p><!--/ Abstract__block -->\u0000<h3>Peer review</h3>\u0000<p>The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2024-0127/</p><!--/ Abstract__block -->","PeriodicalId":13523,"journal":{"name":"Industrial Lubrication and Tribology","volume":"48 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141743156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinming Zhen, Congcong Zhen, Min Yuan, Yingliang Liu, Li Wang, Lin Yuan, Yuhan Sun, Xinyue Zhang, Xiaoshu Yang, Haojian Huang
{"title":"Significant sliding speed effect on the friction and wear behavior of UHMWPE matrix composites","authors":"Jinming Zhen, Congcong Zhen, Min Yuan, Yingliang Liu, Li Wang, Lin Yuan, Yuhan Sun, Xinyue Zhang, Xiaoshu Yang, Haojian Huang","doi":"10.1108/ilt-03-2024-0069","DOIUrl":"https://doi.org/10.1108/ilt-03-2024-0069","url":null,"abstract":"<h3>Purpose</h3>\u0000<p>With the rapid development of the pipeline transportation and exploitation of mineral resources, it is urgent requirement for the high-performance polymer matrix composites with low friction and wear to meet the needs of solid material transportation. This paper aims to prepare high-performance ultrahigh molecular weight polyethylene (UHMWPE) matrix composites and investigate the effect of service condition on frictional behavior for composite.</p><!--/ Abstract__block -->\u0000<h3>Design/methodology/approach</h3>\u0000<p>In this study, UHMWPE matrix composites with different content of MoS<sub>2</sub> were prepared and the tribological performance of the GCr15/composites friction pair in various sliding speeds (0.025–0.125 m/s) under dry friction conditions were studied by ball-on-disk tribology experiments.</p><!--/ Abstract__block -->\u0000<h3>Findings</h3>\u0000<p>Results show that the frictional behavior was shown to be sensitive to MoS2 concentration and sliding velocity. As the MoS2 content is 2 Wt.%, composites presented the best overall tribological performance. Besides, the friction coefficient fluctuates around 0.21 from 0.025 to 0.125 m/s sliding speed, while the wear rate increases gradually. Scanning electron microscopy images, energy-dispersive spectroscopy and Raman Spectrum analysis present that the main wear mechanisms were abrasive and fatigue wear.</p><!--/ Abstract__block -->\u0000<h3>Originality/value</h3>\u0000<p>The knowledge obtained herein will facilitate the design of UHMWPE matrix composites with promising self-lubrication performances which used in slag transport engineering field.</p><!--/ Abstract__block -->","PeriodicalId":13523,"journal":{"name":"Industrial Lubrication and Tribology","volume":"78 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141608837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on milling surface quality of superalloy GH4145","authors":"Jinfu Shi, Qi Gao","doi":"10.1108/ilt-03-2024-0080","DOIUrl":"https://doi.org/10.1108/ilt-03-2024-0080","url":null,"abstract":"<h3>Purpose</h3>\u0000<p>This study aims to reveal the influence of milling process parameters on the surface roughness and morphology of superalloy GH4145.The groove milling mechanism and surface quality influence factors of superalloy GH4145 were studied experimentally.</p><!--/ Abstract__block -->\u0000<h3>Design/methodology/approach</h3>\u0000<p>This paper provides investigations on three-dimensional finite element model (FEM) and simulation of milling process for GH4145.The milling experiment uses Taguchi L16 experimental design and single factor experimental design. The surface morphology of the workpiece was observed by scanning electron microscopy, and the influence mechanism of milling parameters on surface quality is expounded.</p><!--/ Abstract__block -->\u0000<h3>Findings</h3>\u0000<p>The results show that the cutting force increases by 133% with the increase in milling depth. The measured minimum surface roughness is 0.035 µm. With the change in milling depth, the surface roughness increases by 249%. With the change in cutting speed, the surface roughness increased by 54.8%. As the feed rate increases, the surface roughness increases by a maximum of 91.1%. The milling experiment verifies that the error between the predicted surface roughness and the actual value is less than 8%.</p><!--/ Abstract__block -->\u0000<h3>Originality/value</h3>\u0000<p>The milling experiment uses a Taguchi L16 experimental design and a single-factor experimental design. Mathematical models can be used in research as a contribution to current research. In addition, the milling cutter can be changed to further test this experiment. Reveal the influence of milling process parameters on the surface roughness and morphology of superalloy GH4145.</p><!--/ Abstract__block -->\u0000<h3>Peer review</h3>\u0000<p>The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2024-0080/</p><!--/ Abstract__block -->","PeriodicalId":13523,"journal":{"name":"Industrial Lubrication and Tribology","volume":"11 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141608715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The effect of friction characteristics on electromagnetic impact deformation mechanism of 2A10 aluminum alloy bars","authors":"Xu Zhang, Kangjie Tang, Yingyu Wang, Dongying Dong","doi":"10.1108/ilt-05-2024-0154","DOIUrl":"https://doi.org/10.1108/ilt-05-2024-0154","url":null,"abstract":"<h3>Purpose</h3>\u0000<p>The purpose objective of this study is to identify the friction coefficient and friction effect in electromagnetic upsetting (EMU) high-speed forming process.</p><!--/ Abstract__block -->\u0000<h3>Design/methodology/approach</h3>\u0000<p>Based on numerical simulation and upsetting experiment of 2A10 aluminum alloy bar, the friction coefficient between contact surfaces is obtained by combining the fitting displacement distribution function and the electromagnetic-mechanical coupling numerical model, and the influence of friction effect is analyzed.</p><!--/ Abstract__block -->\u0000<h3>Findings</h3>\u0000<p>The maximum impact velocity and acceleration during EMU are 13.9 m/s and −3.3 × 106 m/s<sup>2</sup>, respectively, and the maximum strain rate is 7700 s<sup>−1</sup>. The functional distribution relationship between friction coefficient combination (FS, FD) and characteristic parameters [upper diameter (D1) and middle diameter (D2)] is established. The values of FS and FD are 0.1402 and 0.0931, respectively, and the maximum relative error is 2.39%. By analyzing the distribution of equivalent stress and strain, it is found that plastic deformation has obvious zoning characteristics and there is serious failure concentration in the strong shear zone.</p><!--/ Abstract__block -->\u0000<h3>Originality/value</h3>\u0000<p>Friction coefficient significantly affects stress or strain distributions in material forming process, but it is difficult to obtain friction coefficients through experimental tests in the high-speed forming process. In this paper, a multi-field coupling numerical model is proposed to determine friction coefficients and applied to the electromagnetic impact loading process (a high-speed forming process).</p><!--/ Abstract__block -->\u0000<h3>Peer review</h3>\u0000<p>The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2024-0154/</p><!--/ Abstract__block -->","PeriodicalId":13523,"journal":{"name":"Industrial Lubrication and Tribology","volume":"75 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141566681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identification of dynamic parameters of journal bearings in an asymmetric rotor-bearing system","authors":"Yinsi Chen, Yuan Li, Heng Liu, Yi Liu","doi":"10.1108/ilt-03-2024-0096","DOIUrl":"https://doi.org/10.1108/ilt-03-2024-0096","url":null,"abstract":"<h3>Purpose</h3>\u0000<p>The purpose of this study is to identify the dynamic parameters of journal bearings in asymmetric rotor systems without additional test runs or excitations.</p><!--/ Abstract__block -->\u0000<h3>Design/methodology/approach</h3>\u0000<p>An asymmetric rotor-bearing test rig was set up for the identification experiment. Comparations were made between the measured response of the asymmetric rotor and the symmetric rotor. The mathematical model of the asymmetric rotor is established by the finite element method. The identification algorithm is based on the model of the rotor and the measured vibration response to identify bearing parameters. The influence of modeling error and measurement noise on the identification results are numerically analyzed. The dynamic parameters of the journal bearings under different rotational speeds are identified and compared with the theoretical values calculated by the perturbation method.</p><!--/ Abstract__block -->\u0000<h3>Findings</h3>\u0000<p>The experiment results show that the vibration characteristics of the asymmetric rotor and the symmetric rotor are different. The numerical evaluation of the identification algorithm shows that the algorithm is accurate and has good robustness to modeling error and measurement noise. The identified dynamic parameters agree reasonably well with the parameters derived from the theoretical bearing model.</p><!--/ Abstract__block -->\u0000<h3>Originality/value</h3>\u0000<p>The proposed identification method uses the unique vibration characteristics of asymmetric rotors to identify the bearing dynamic parameters. As the method does not require excitations or additional test runs, it is suitable for the field test.</p><!--/ Abstract__block -->\u0000<h3>Peer review</h3>\u0000<p>The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2024-0096/</p><!--/ Abstract__block -->","PeriodicalId":13523,"journal":{"name":"Industrial Lubrication and Tribology","volume":"3 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141500582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jian Sun, Junran Huang, Zhonghao Tian, Jinmei Yao, Yang Zhang, Lu Wang
{"title":"Effect of oil film stiffness on vibration of full ceramic ball bearing under grease lubrication","authors":"Jian Sun, Junran Huang, Zhonghao Tian, Jinmei Yao, Yang Zhang, Lu Wang","doi":"10.1108/ilt-03-2024-0094","DOIUrl":"https://doi.org/10.1108/ilt-03-2024-0094","url":null,"abstract":"<h3>Purpose</h3>\u0000<p>This paper aims to understand the vibration characteristics of full ceramic ball bearings under grease lubrication, reduce the vibration of the bearings and improve their service life.</p><!--/ Abstract__block -->\u0000<h3>Design/methodology/approach</h3>\u0000<p>The Hertz contact stiffness formula for full ceramic ball bearings is constructed; the equivalent comprehensive stiffness calculation model and vibration model of full ceramic ball bearings are established. The dynamic characteristic test of full ceramic ball bearing under grease lubrication was carried out by using the bearing life testing machine, and its vibration was measured, and its vibration acceleration root-mean-square was obtained by software calculation and compared with the simulation results.</p><!--/ Abstract__block -->\u0000<h3>Findings</h3>\u0000<p>At the rotational speed of 12,000 r/min, the root-mean-square value of vibration acceleration is maximum 10.82 m/s<sup>2</sup>, and the error is also maximum 7.49%. As the rotational speed increases, the oil film stiffness decreases. In the radial load of 600 N, the vibration acceleration root-mean-square is minimum 6.40 m/s<sup>2</sup>, but its error is maximum 6.56%. As the radial load increases, the vibration of the bearing decreases and then increases, so under certain conditions increasing the radial load can reduce the bearing vibration. With different types of grease, the best preload is also different; low-speed heavy load should be used when the viscosity of the grease is large, and high-speed light load should be used when the choice of smaller viscosity grease is made.</p><!--/ Abstract__block -->\u0000<h3>Originality/value</h3>\u0000<p>It provides a theoretical basis for the application of full ceramic ball bearings under grease lubrication, which is of great significance for reducing the vibration of bearings as well as enhancing the service life of bearings.</p><!--/ Abstract__block -->\u0000<h3>Peer review</h3>\u0000<p>The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2024-0094/</p><!--/ Abstract__block -->","PeriodicalId":13523,"journal":{"name":"Industrial Lubrication and Tribology","volume":"27 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lubricating properties of thymol-based deep eutectic solvents","authors":"Ting Li, Zhipeng Zhang, Junhai Wang, Tingting Yan, Rui Wang, Xinran Li, Lixiu Zhang, Xiaoyi Wei","doi":"10.1108/ilt-03-2024-0070","DOIUrl":"https://doi.org/10.1108/ilt-03-2024-0070","url":null,"abstract":"<h3>Purpose</h3>\u0000<p>This study aims to prepare thymol-based deep eutectic solvents (DESs) and use them as lubricates for friction and wear tests to simulate the wear conditions of hybrid bearings.</p><!--/ Abstract__block -->\u0000<h3>Design/methodology/approach</h3>\u0000<p>Through the characterization and analysis of the morphology of wear scars and the elemental composition of friction films, the tribological behavior and wear mechanism of sample materials as lubricants were investigated and the anti-wear mechanism of thymol-based DESs was discussed.</p><!--/ Abstract__block -->\u0000<h3>Findings</h3>\u0000<p>The findings demonstrate that because of the formation of a fluid lubrication film and excellent kinematic viscosity, the lubrication effect of the prepared DES is improved by about 50% compared to the base lubricating oil. The prepared [Ch]Cl-thymol DES has a better anti-friction and lubrication effect than citric-thymol, EG-thymol and urea-thymol DESs, with an average friction coefficient of about 0.04.</p><!--/ Abstract__block -->\u0000<h3>Originality/value</h3>\u0000<p>In this work, the friction reduction properties of thymol-based DESs were studied as lubricants for the first time, and the lubrication mechanism of sample materials was investigated.</p><!--/ Abstract__block -->","PeriodicalId":13523,"journal":{"name":"Industrial Lubrication and Tribology","volume":"74 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141500581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improving frictional and insulation performance with silica-coated titanium dioxide additives in grease","authors":"Kuo Yang, Yanqiu Xia, Wenhao Chen, Yi Zhang","doi":"10.1108/ilt-03-2024-0076","DOIUrl":"https://doi.org/10.1108/ilt-03-2024-0076","url":null,"abstract":"<h3>Purpose</h3>\u0000<p>The purpose of this study was to synthesize composite nanoparticles (TiO<sub>2</sub>@SiO<sub>2</sub>) via the chemical deposition method and investigate their efficacy as additives in polytetrafluoroethylene (PTFE) lubricating grease. The focus was on examining the frictional and conductive properties of the TiO<sub>2</sub>@SiO<sub>2</sub> grease using a friction tester.</p><!--/ Abstract__block -->\u0000<h3>Design/methodology/approach</h3>\u0000<p>Composite nanoparticles (TiO<sub>2</sub>@SiO<sub>2</sub>) were synthesized using the chemical deposition method and incorporated into PTFE grease. Frictional and conductive properties were evaluated using a friction tester. Surface morphology and chemical composition of wear tracks were analyzed using scanning electron microscope and X-ray photoelectron spectroscopy, respectively.</p><!--/ Abstract__block -->\u0000<h3>Findings</h3>\u0000<p>Incorporating TiO<sub>2</sub>@SiO<sub>2</sub> at a mass fraction of 1 Wt.% led to a significant reduction in friction coefficient and wear width. The wear depth exhibited a remarkable decrease of 260%, while the contact resistance reached its peak value. This improvement in tribological properties could be attributed to the presence of TiO<sub>2</sub>@SiO<sub>2</sub>, where TiO<sub>2</sub> served as the core and SiO<sub>2</sub> as the shell during the friction process. The high hardness of the SiO<sub>2</sub> shell contributed to enhanced load-bearing capacity. In addition, the exceptional insulation properties of SiO<sub>2</sub> demonstrated excellent electron-capturing capabilities, resulting in improved friction and insulation performance of the TiO<sub>2</sub>@SiO<sub>2</sub> lubricating grease.</p><!--/ Abstract__block -->\u0000<h3>Originality/value</h3>\u0000<p>This study demonstrates the potential of TiO<sub>2</sub>@SiO<sub>2</sub> composite nanoparticles as additives in lubricating greases, offering improved friction and insulation performance. The findings provide insights into the design of advanced lubricating materials with enhanced tribological properties and insulation capacity, contributing to the development of more efficient and durable lubrication systems.</p><!--/ Abstract__block -->","PeriodicalId":13523,"journal":{"name":"Industrial Lubrication and Tribology","volume":"161 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}