Luo Yue, Yan Meng, Eunji Lee, Pengpeng Bai, Yingzhuo Pan, Peng Wei, Jie Cheng, Yonggang Meng, Yu Tian
{"title":"磷化添加剂对 Si3N4 和 M50 体系中聚乙稀硅氧烷(PES)摩擦学特性的影响","authors":"Luo Yue, Yan Meng, Eunji Lee, Pengpeng Bai, Yingzhuo Pan, Peng Wei, Jie Cheng, Yonggang Meng, Yu Tian","doi":"10.1108/ilt-04-2024-0139","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The incorporation of phosphide additives is regarded as a highly effective strategy for enhancing the lubricative qualities of base oils. This study aims to assess the lubrication behavior and efficacy of various phosphide additives in polyethylsiloxane (PES) through the employment of the Schwingum Reibung Verschleiss test methodology, across a temperature range from ambient to 300°C.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>PES demonstrated commendable lubrication capabilities within the Si3N4/M50 system, primarily attributable to the Si-O frictional reaction film at the interface. This film undergoes disintegration as the temperature escalates, leading to heightened wear. Moreover, the phosphide additives were found to ameliorate the issues encountered by PES in the Si3N4/M50 system, characterized by numerous boundary lubrication failure instances. A chemical film comprising P-Fe-O was observed to form at the interface; however, at elevated temperatures, disintegration of some phosphide films precipitated lubrication failures, as evidenced by a precipitous rise in the coefficient of friction.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The results show that a phosphide reactive film can be formed and a reduction in wear rate is achieved, which is reduced by 64.7% from 2.98 (for pure PES at 300°C) to 1.05 × 10<sup>–9</sup> μm<sup>3</sup>/N m (for triphenyl phosphite at 300°C).</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The data derived from this investigation offer critical insights for the selection and deployment of phosphide additives within high-temperature lubrication environments pertinent to PES.</p><!--/ Abstract__block -->\n<h3>Peer review</h3>\n<p>The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2024-0139/</p><!--/ Abstract__block -->","PeriodicalId":13523,"journal":{"name":"Industrial Lubrication and Tribology","volume":"69 2 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of phosphide additives on the tribological properties of polyethylsiloxane (PES) in Si3N4 and M50 system\",\"authors\":\"Luo Yue, Yan Meng, Eunji Lee, Pengpeng Bai, Yingzhuo Pan, Peng Wei, Jie Cheng, Yonggang Meng, Yu Tian\",\"doi\":\"10.1108/ilt-04-2024-0139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>The incorporation of phosphide additives is regarded as a highly effective strategy for enhancing the lubricative qualities of base oils. This study aims to assess the lubrication behavior and efficacy of various phosphide additives in polyethylsiloxane (PES) through the employment of the Schwingum Reibung Verschleiss test methodology, across a temperature range from ambient to 300°C.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>PES demonstrated commendable lubrication capabilities within the Si3N4/M50 system, primarily attributable to the Si-O frictional reaction film at the interface. This film undergoes disintegration as the temperature escalates, leading to heightened wear. Moreover, the phosphide additives were found to ameliorate the issues encountered by PES in the Si3N4/M50 system, characterized by numerous boundary lubrication failure instances. A chemical film comprising P-Fe-O was observed to form at the interface; however, at elevated temperatures, disintegration of some phosphide films precipitated lubrication failures, as evidenced by a precipitous rise in the coefficient of friction.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The results show that a phosphide reactive film can be formed and a reduction in wear rate is achieved, which is reduced by 64.7% from 2.98 (for pure PES at 300°C) to 1.05 × 10<sup>–9</sup> μm<sup>3</sup>/N m (for triphenyl phosphite at 300°C).</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>The data derived from this investigation offer critical insights for the selection and deployment of phosphide additives within high-temperature lubrication environments pertinent to PES.</p><!--/ Abstract__block -->\\n<h3>Peer review</h3>\\n<p>The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2024-0139/</p><!--/ Abstract__block -->\",\"PeriodicalId\":13523,\"journal\":{\"name\":\"Industrial Lubrication and Tribology\",\"volume\":\"69 2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Lubrication and Tribology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/ilt-04-2024-0139\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Lubrication and Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/ilt-04-2024-0139","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Effect of phosphide additives on the tribological properties of polyethylsiloxane (PES) in Si3N4 and M50 system
Purpose
The incorporation of phosphide additives is regarded as a highly effective strategy for enhancing the lubricative qualities of base oils. This study aims to assess the lubrication behavior and efficacy of various phosphide additives in polyethylsiloxane (PES) through the employment of the Schwingum Reibung Verschleiss test methodology, across a temperature range from ambient to 300°C.
Design/methodology/approach
PES demonstrated commendable lubrication capabilities within the Si3N4/M50 system, primarily attributable to the Si-O frictional reaction film at the interface. This film undergoes disintegration as the temperature escalates, leading to heightened wear. Moreover, the phosphide additives were found to ameliorate the issues encountered by PES in the Si3N4/M50 system, characterized by numerous boundary lubrication failure instances. A chemical film comprising P-Fe-O was observed to form at the interface; however, at elevated temperatures, disintegration of some phosphide films precipitated lubrication failures, as evidenced by a precipitous rise in the coefficient of friction.
Findings
The results show that a phosphide reactive film can be formed and a reduction in wear rate is achieved, which is reduced by 64.7% from 2.98 (for pure PES at 300°C) to 1.05 × 10–9 μm3/N m (for triphenyl phosphite at 300°C).
Originality/value
The data derived from this investigation offer critical insights for the selection and deployment of phosphide additives within high-temperature lubrication environments pertinent to PES.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2024-0139/
期刊介绍:
Industrial Lubrication and Tribology provides a broad coverage of the materials and techniques employed in tribology. It contains a firm technical news element which brings together and promotes best practice in the three disciplines of tribology, which comprise lubrication, wear and friction. ILT also follows the progress of research into advanced lubricants, bearings, seals, gears and related machinery parts, as well as materials selection. A double-blind peer review process involving the editor and other subject experts ensures the content''s validity and relevance.