Xuan Zhang, Jin-Bo Jiang, Xudong Peng, Zhongjin Ni, Jun Pan
{"title":"不同空腔形状的孔型阻尼密封件旋转动力学特性比较研究","authors":"Xuan Zhang, Jin-Bo Jiang, Xudong Peng, Zhongjin Ni, Jun Pan","doi":"10.1108/ilt-04-2024-0127","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The purpose of this paper is to improve the seal performance by proper design of the cavity shape of the damping holes, especially the rotordynamics characteristics of the hole-pattern damped seal (HPDS).</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>A new damping seal structure that comprises a circle-shaped cavity and two directional leaf-shaped cavities with a dovetail-shaped diversion groove is proposed. The comparative study on the sealing characteristics of dovetail-shape, leaf-shape and classical circular HPDSs was carried out using ANSYS CFX.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The dovetail-shaped HPDS significantly outperformed two other damping seal designs in leakage and rotordynamic performance. At a rotating speed of 7,500 rpm, it showed a 25% reduction in leakage, a 23% increase in average effective damping and a 119% increase in average effective stiffness. The cross-coupled stiffness <em>K<sub>xy</sub></em> shifted from positive to negative, reducing circumferential flow. The dovetail's inclined leaf-shaped grooves create a double vortex that slows jet velocity in the seal clearance and alters spiral flow direction, resulting in a uniform pressure distribution and enhanced rotor stability at low frequencies.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This study proposes a novel HPDS with dovetail-shaped diversion grooves. The seal can realize the simultaneous improvement of rotordynamics and leakage characteristics compared to the current seal structure.</p><!--/ Abstract__block -->\n<h3>Peer review</h3>\n<p>The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2024-0127/</p><!--/ Abstract__block -->","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative study on rotordynamics characteristics of hole-pattern damping seals with different cavity shapes\",\"authors\":\"Xuan Zhang, Jin-Bo Jiang, Xudong Peng, Zhongjin Ni, Jun Pan\",\"doi\":\"10.1108/ilt-04-2024-0127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>The purpose of this paper is to improve the seal performance by proper design of the cavity shape of the damping holes, especially the rotordynamics characteristics of the hole-pattern damped seal (HPDS).</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>A new damping seal structure that comprises a circle-shaped cavity and two directional leaf-shaped cavities with a dovetail-shaped diversion groove is proposed. The comparative study on the sealing characteristics of dovetail-shape, leaf-shape and classical circular HPDSs was carried out using ANSYS CFX.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The dovetail-shaped HPDS significantly outperformed two other damping seal designs in leakage and rotordynamic performance. At a rotating speed of 7,500 rpm, it showed a 25% reduction in leakage, a 23% increase in average effective damping and a 119% increase in average effective stiffness. The cross-coupled stiffness <em>K<sub>xy</sub></em> shifted from positive to negative, reducing circumferential flow. The dovetail's inclined leaf-shaped grooves create a double vortex that slows jet velocity in the seal clearance and alters spiral flow direction, resulting in a uniform pressure distribution and enhanced rotor stability at low frequencies.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>This study proposes a novel HPDS with dovetail-shaped diversion grooves. The seal can realize the simultaneous improvement of rotordynamics and leakage characteristics compared to the current seal structure.</p><!--/ Abstract__block -->\\n<h3>Peer review</h3>\\n<p>The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2024-0127/</p><!--/ Abstract__block -->\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/ilt-04-2024-0127\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/ilt-04-2024-0127","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A comparative study on rotordynamics characteristics of hole-pattern damping seals with different cavity shapes
Purpose
The purpose of this paper is to improve the seal performance by proper design of the cavity shape of the damping holes, especially the rotordynamics characteristics of the hole-pattern damped seal (HPDS).
Design/methodology/approach
A new damping seal structure that comprises a circle-shaped cavity and two directional leaf-shaped cavities with a dovetail-shaped diversion groove is proposed. The comparative study on the sealing characteristics of dovetail-shape, leaf-shape and classical circular HPDSs was carried out using ANSYS CFX.
Findings
The dovetail-shaped HPDS significantly outperformed two other damping seal designs in leakage and rotordynamic performance. At a rotating speed of 7,500 rpm, it showed a 25% reduction in leakage, a 23% increase in average effective damping and a 119% increase in average effective stiffness. The cross-coupled stiffness Kxy shifted from positive to negative, reducing circumferential flow. The dovetail's inclined leaf-shaped grooves create a double vortex that slows jet velocity in the seal clearance and alters spiral flow direction, resulting in a uniform pressure distribution and enhanced rotor stability at low frequencies.
Originality/value
This study proposes a novel HPDS with dovetail-shaped diversion grooves. The seal can realize the simultaneous improvement of rotordynamics and leakage characteristics compared to the current seal structure.
Peer review
The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2024-0127/
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.