IEEE Transactions on Medical Imaging最新文献

筛选
英文 中文
Masked conditional variational autoencoders for chromosome straightening 用于染色体拉直的掩蔽条件变分自动编码器
IF 10.6 1区 医学
IEEE Transactions on Medical Imaging Pub Date : 2023-06-25 DOI: 10.48550/arXiv.2306.14129
Jingxiong Li, S. Zheng, Zhongyi Shui, Shichuan Zhang, Linyi Yang, Yuxuan Sun, Yunlong Zhang, Honglin Li, Y. Ye, P. V. Ooijen, Kang Li, Lin Yang
{"title":"Masked conditional variational autoencoders for chromosome straightening","authors":"Jingxiong Li, S. Zheng, Zhongyi Shui, Shichuan Zhang, Linyi Yang, Yuxuan Sun, Yunlong Zhang, Honglin Li, Y. Ye, P. V. Ooijen, Kang Li, Lin Yang","doi":"10.48550/arXiv.2306.14129","DOIUrl":"https://doi.org/10.48550/arXiv.2306.14129","url":null,"abstract":"Karyotyping is of importance for detecting chromosomal aberrations in human disease. However, chromosomes easily appear curved in microscopic images, which prevents cytogeneticists from analyzing chromosome types. To address this issue, we propose a framework for chromosome straightening, which comprises a preliminary processing algorithm and a generative model called masked conditional variational autoencoders (MC-VAE). The processing method utilizes patch rearrangement to address the difficulty in erasing low degrees of curvature, providing reasonable preliminary results for the MC-VAE. The MC-VAE further straightens the results by leveraging chromosome patches conditioned on their curvatures to learn the mapping between banding patterns and conditions. During model training, we apply a masking strategy with a high masking ratio to train the MC-VAE with eliminated redundancy. This yields a non-trivial reconstruction task, allowing the model to effectively preserve chromosome banding patterns and structure details in the reconstructed results. Extensive experiments on three public datasets with two stain styles show that our framework surpasses the performance of state-of-the-art methods in retaining banding patterns and structure details. Compared to using real-world bent chromosomes, the use of high-quality straightened chromosomes generated by our proposed method can improve the performance of various deep learning models for chromosome classification by a large margin. Such a straightening approach has the potential to be combined with other karyotyping systems to assist cytogeneticists in chromosome analysis.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":" ","pages":""},"PeriodicalIF":10.6,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47136654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Laplacian Pyramid Based Generative H&E Stain Augmentation Network 基于拉普拉斯金字塔的生成H&E染色增强网络
IF 10.6 1区 医学
IEEE Transactions on Medical Imaging Pub Date : 2023-05-23 DOI: 10.48550/arXiv.2305.14301
Fangda Li, Zhiqiang Hu, Wen Chen, A. Kak
{"title":"A Laplacian Pyramid Based Generative H&E Stain Augmentation Network","authors":"Fangda Li, Zhiqiang Hu, Wen Chen, A. Kak","doi":"10.48550/arXiv.2305.14301","DOIUrl":"https://doi.org/10.48550/arXiv.2305.14301","url":null,"abstract":"Hematoxylin and Eosin (H&E) staining is a widely used sample preparation procedure for enhancing the saturation of tissue sections and the contrast between nuclei and cytoplasm in histology images for medical diagnostics. However, various factors, such as the differences in the reagents used, result in high variability in the colors of the stains actually recorded. This variability poses a challenge in achieving generalization for machine-learning based computer-aided diagnostic tools. To desensitize the learned models to stain variations, we propose the Generative Stain Augmentation Network (G-SAN) - a GAN-based framework that augments a collection of cell images with simulated yet realistic stain variations. At its core, G-SAN uses a novel and highly computationally efficient Laplacian Pyramid (LP) based generator architecture, that is capable of disentangling stain from cell morphology. Through the task of patch classification and nucleus segmentation, we show that using G-SAN-augmented training data provides on average 15.7% improvement in F1 score and 7.3% improvement in panoptic quality, respectively. Our code is available at https://github.com/lifangda01/GSAN-Demo.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":" ","pages":""},"PeriodicalIF":10.6,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46662981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review 深度学习在MRI回顾性运动矫正中的应用综述
IF 10.6 1区 医学
IEEE Transactions on Medical Imaging Pub Date : 2023-05-11 DOI: 10.48550/arXiv.2305.06739
Veronika Spieker, H. Eichhorn, K. Hammernik, D. Rueckert, C. Preibisch, D. Karampinos, J. Schnabel
{"title":"Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review","authors":"Veronika Spieker, H. Eichhorn, K. Hammernik, D. Rueckert, C. Preibisch, D. Karampinos, J. Schnabel","doi":"10.48550/arXiv.2305.06739","DOIUrl":"https://doi.org/10.48550/arXiv.2305.06739","url":null,"abstract":"Motion represents one of the major challenges in magnetic resonance imaging (MRI). Since the MR signal is acquired in frequency space, any motion of the imaged object leads to complex artefacts in the reconstructed image in addition to other MR imaging artefacts. Deep learning has been frequently proposed for motion correction at several stages of the reconstruction process. The wide range of MR acquisition sequences, anatomies and pathologies of interest, and motion patterns (rigid vs. deformable and random vs. regular) makes a comprehensive solution unlikely. To facilitate the transfer of ideas between different applications, this review provides a detailed overview of proposed methods for learning-based motion correction in MRI together with their common challenges and potentials. This review identifies differences and synergies in underlying data usage, architectures, training and evaluation strategies. We critically discuss general trends and outline future directions, with the aim to enhance interaction between different application areas and research fields.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":" ","pages":""},"PeriodicalIF":10.6,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42662913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
FVP: Fourier Visual Prompting for Source-Free Unsupervised Domain Adaptation of Medical Image Segmentation 基于傅立叶视觉提示的无源无监督域医学图像分割
IF 10.6 1区 医学
IEEE Transactions on Medical Imaging Pub Date : 2023-04-26 DOI: 10.48550/arXiv.2304.13672
Yan Wang, Jian Cheng, Yixin Chen, Shuai Shao, Lanyun Zhu, Zhenzhou Wu, T. Liu, Haogang Zhu
{"title":"FVP: Fourier Visual Prompting for Source-Free Unsupervised Domain Adaptation of Medical Image Segmentation","authors":"Yan Wang, Jian Cheng, Yixin Chen, Shuai Shao, Lanyun Zhu, Zhenzhou Wu, T. Liu, Haogang Zhu","doi":"10.48550/arXiv.2304.13672","DOIUrl":"https://doi.org/10.48550/arXiv.2304.13672","url":null,"abstract":"Medical image segmentation methods normally perform poorly when there is a domain shift between training and testing data. Unsupervised Domain Adaptation (UDA) addresses the domain shift problem by training the model using both labeled data from the source domain and unlabeled data from the target domain. Source-Free UDA (SFUDA) was recently proposed for UDA without requiring the source data during the adaptation, due to data privacy or data transmission issues, which normally adapts the pre-trained deep model in the testing stage. However, in real clinical scenarios of medical image segmentation, the trained model is normally frozen in the testing stage. In this paper, we propose Fourier Visual Prompting (FVP) for SFUDA of medical image segmentation. Inspired by prompting learning in natural language processing, FVP steers the frozen pre-trained model to perform well in the target domain by adding a visual prompt to the input target data. In FVP, the visual prompt is parameterized using only a small amount of low-frequency learnable parameters in the input frequency space, and is learned by minimizing the segmentation loss between the predicted segmentation of the prompted target image and reliable pseudo segmentation label of the target image under the frozen model. To our knowledge, FVP is the first work to apply visual prompts to SFUDA for medical image segmentation. The proposed FVP is validated using three public datasets, and experiments demonstrate that FVP yields better segmentation results, compared with various existing methods.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":" ","pages":""},"PeriodicalIF":10.6,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43372805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Point-supervised Single-cell Segmentation via Collaborative Knowledge Sharing 基于协作知识共享的点监督单细胞分割
IF 10.6 1区 医学
IEEE Transactions on Medical Imaging Pub Date : 2023-04-20 DOI: 10.48550/arXiv.2304.10671
Ji Yu
{"title":"Point-supervised Single-cell Segmentation via Collaborative Knowledge Sharing","authors":"Ji Yu","doi":"10.48550/arXiv.2304.10671","DOIUrl":"https://doi.org/10.48550/arXiv.2304.10671","url":null,"abstract":"Despite their superior performance, deep-learning methods often suffer from the disadvantage of needing large-scale well-annotated training data. In response, recent literature has seen a proliferation of efforts aimed at reducing the annotation burden. This paper focuses on a weakly-supervised training setting for single-cell segmentation models, where the only available training label is the rough locations of individual cells. The specific problem is of practical interest due to the widely available nuclei counter-stain data in biomedical literature, from which the cell locations can be derived programmatically. Of more general interest is a proposed self-learning method called collaborative knowledge sharing, which is related to but distinct from the more well-known consistency learning methods. This strategy achieves self-learning by sharing knowledge between a principal model and a very light-weight collaborator model. Importantly, the two models are entirely different in their architectures, capacities, and model outputs: In our case, the principal model approaches the segmentation problem from an object-detection perspective, whereas the collaborator model a sematic segmentation perspective. We assessed the effectiveness of this strategy by conducting experiments on LIVECell, a large single-cell segmentation dataset of bright-field images, and on A431 dataset, a fluorescence image dataset in which the location labels are generated automatically from nuclei counter-stain data. Implementing code is available at https://github.com/jiyuuchc/lacss.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":" ","pages":""},"PeriodicalIF":10.6,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42725429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ideal Observer Computation by Use of Markov-Chain Monte Carlo with Generative Adversarial Networks 基于生成对抗网络的马尔可夫链蒙特卡罗理想观测器计算
IF 10.6 1区 医学
IEEE Transactions on Medical Imaging Pub Date : 2023-04-02 DOI: 10.48550/arXiv.2304.00433
Weimin Zhou, Umberto Villa, M. Anastasio
{"title":"Ideal Observer Computation by Use of Markov-Chain Monte Carlo with Generative Adversarial Networks","authors":"Weimin Zhou, Umberto Villa, M. Anastasio","doi":"10.48550/arXiv.2304.00433","DOIUrl":"https://doi.org/10.48550/arXiv.2304.00433","url":null,"abstract":"Medical imaging systems are often evaluated and optimized via objective, or task-specific, measures of image quality (IQ) that quantify the performance of an observer on a specific clinically-relevant task. The performance of the Bayesian Ideal Observer (IO) sets an upper limit among all observers, numerical or human, and has been advocated for use as a figure-of-merit (FOM) for evaluating and optimizing medical imaging systems. However, the IO test statistic corresponds to the likelihood ratio that is intractable to compute in the majority of cases. A sampling-based method that employs Markov-Chain Monte Carlo (MCMC) techniques was previously proposed to estimate the IO performance. However, current applications of MCMC methods for IO approximation have been limited to a small number of situations where the considered distribution of to-be-imaged objects can be described by a relatively simple stochastic object model (SOM). As such, there remains an important need to extend the domain of applicability of MCMC methods to address a large variety of scenarios where IO-based assessments are needed but the associated SOMs have not been available. In this study, a novel MCMC method that employs a generative adversarial network (GAN)-based SOM, referred to as MCMC-GAN, is described and evaluated. The MCMC-GAN method was quantitatively validated by use of test-cases for which reference solutions were available. The results demonstrate that the MCMC-GAN method can extend the domain of applicability of MCMC methods for conducting IO analyses of medical imaging systems.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":"PP 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2023-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41342898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aligning Multi-Sequence CMR Towards Fully Automated Myocardial Pathology Segmentation 将多序列CMR对准全自动心肌病理分割
IF 10.6 1区 医学
IEEE Transactions on Medical Imaging Pub Date : 2023-02-07 DOI: 10.48550/arXiv.2302.03537
Wangbin Ding, Lei Li, Junyi Qiu, Sihan Wang, Liqin Huang, Yinyin Chen, Shan Yang, X. Zhuang
{"title":"Aligning Multi-Sequence CMR Towards Fully Automated Myocardial Pathology Segmentation","authors":"Wangbin Ding, Lei Li, Junyi Qiu, Sihan Wang, Liqin Huang, Yinyin Chen, Shan Yang, X. Zhuang","doi":"10.48550/arXiv.2302.03537","DOIUrl":"https://doi.org/10.48550/arXiv.2302.03537","url":null,"abstract":"Myocardial pathology segmentation (MyoPS) is critical for the risk stratification and treatment planning of myocardial infarction (MI). Multi-sequence cardiac magnetic resonance (MS-CMR) images can provide valuable information. For instance, balanced steady-state free precession cine sequences present clear anatomical boundaries, while late gadolinium enhancement and T2-weighted CMR sequences visualize myocardial scar and edema of MI, respectively. Existing methods usually fuse anatomical and pathological information from different CMR sequences for MyoPS, but assume that these images have been spatially aligned. However, MS-CMR images are usually unaligned due to the respiratory motions in clinical practices, which poses additional challenges for MyoPS. This work presents an automatic MyoPS framework for unaligned MS-CMR images. Specifically, we design a combined computing model for simultaneous image registration and information fusion, which aggregates multi-sequence features into a common space to extract anatomical structures (i.e., myocardium). Consequently, we can highlight the informative regions in the common space via the extracted myocardium to improve MyoPS performance, considering the spatial relationship between myocardial pathologies and myocardium. Experiments on a private MS-CMR dataset and a public dataset from the MYOPS2020 challenge show that our framework could achieve promising performance for fully automatic MyoPS.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":" ","pages":""},"PeriodicalIF":10.6,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45904269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AIROGS: Artificial Intelligence for RObust Glaucoma Screening Challenge AIROGS:RObust青光眼筛查挑战的人工智能
IF 10.6 1区 医学
IEEE Transactions on Medical Imaging Pub Date : 2023-02-03 DOI: 10.48550/arXiv.2302.01738
Coen de Vente, Koen A. Vermeer, Nicolas Jaccard, He Wang, Hongyi Sun, F. Khader, D. Truhn, Temirgali Aimyshev, Yerkebulan Zhanibekuly, Tien-Dung Le, A. Galdran, M. Ballester, G. Carneiro, G. DevikaR, S. HrishikeshP., Densen Puthussery, Hong Liu, Zekang Yang, Satoshi Kondo, S. Kasai, E. Wang, Ashritha Durvasula, J'onathan Heras, M. Zapata, Teresa Ara'ujo, Guilherme Aresta, Hrvoje Bogunovi'c, Mustafa Arikan, Y. Lee, Hyun Bin Cho, Y. Choi, Abdul Qayyum, Imran Razzak, B. Ginneken, H. Lemij, Clara I. S'anchez
{"title":"AIROGS: Artificial Intelligence for RObust Glaucoma Screening Challenge","authors":"Coen de Vente, Koen A. Vermeer, Nicolas Jaccard, He Wang, Hongyi Sun, F. Khader, D. Truhn, Temirgali Aimyshev, Yerkebulan Zhanibekuly, Tien-Dung Le, A. Galdran, M. Ballester, G. Carneiro, G. DevikaR, S. HrishikeshP., Densen Puthussery, Hong Liu, Zekang Yang, Satoshi Kondo, S. Kasai, E. Wang, Ashritha Durvasula, J'onathan Heras, M. Zapata, Teresa Ara'ujo, Guilherme Aresta, Hrvoje Bogunovi'c, Mustafa Arikan, Y. Lee, Hyun Bin Cho, Y. Choi, Abdul Qayyum, Imran Razzak, B. Ginneken, H. Lemij, Clara I. S'anchez","doi":"10.48550/arXiv.2302.01738","DOIUrl":"https://doi.org/10.48550/arXiv.2302.01738","url":null,"abstract":"The early detection of glaucoma is essential in preventing visual impairment. Artificial intelligence (AI) can be used to analyze color fundus photographs (CFPs) in a cost-effective manner, making glaucoma screening more accessible. While AI models for glaucoma screening from CFPs have shown promising results in laboratory settings, their performance decreases significantly in real-world scenarios due to the presence of out-of-distribution and low-quality images. To address this issue, we propose the Artificial Intelligence for Robust Glaucoma Screening (AIROGS) challenge. This challenge includes a large dataset of around 113,000 images from about 60,000 patients and 500 different screening centers, and encourages the development of algorithms that are robust to ungradable and unexpected input data. We evaluated solutions from 14 teams in this paper and found that the best teams performed similarly to a set of 20 expert ophthalmologists and optometrists. The highest-scoring team achieved an area under the receiver operating characteristic curve of 0.99 (95% CI: 0.98-0.99) for detecting ungradable images on-the-fly. Additionally, many of the algorithms showed robust performance when tested on three other publicly available datasets. These results demonstrate the feasibility of robust AI-enabled glaucoma screening.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":" ","pages":""},"PeriodicalIF":10.6,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43317374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
DEQ-MPI: A Deep Equilibrium Reconstruction with Learned Consistency for Magnetic Particle Imaging. DEQ-MPI:具有学习一致性的磁粒子成像深度平衡重构。
IF 10.6 1区 医学
IEEE Transactions on Medical Imaging Pub Date : 2022-12-26 DOI: 10.1109/TMI.2023.3300704.
Alper Gungor, Baris Askin, D. Soydan, Can Barics Top, E. Saritas, Tolga cCukur
{"title":"DEQ-MPI: A Deep Equilibrium Reconstruction with Learned Consistency for Magnetic Particle Imaging.","authors":"Alper Gungor, Baris Askin, D. Soydan, Can Barics Top, E. Saritas, Tolga cCukur","doi":"10.1109/TMI.2023.3300704.","DOIUrl":"https://doi.org/10.1109/TMI.2023.3300704.","url":null,"abstract":"Magnetic particle imaging (MPI) offers unparalleled contrast and resolution for tracing magnetic nanoparticles. A common imaging procedure calibrates a system matrix (SM) that is used to reconstruct data from subsequent scans. The ill-posed reconstruction problem can be solved by simultaneously enforcing data consistency based on the SM and regularizing the solution based on an image prior. Traditional hand-crafted priors cannot capture the complex attributes of MPI images, whereas recent MPI methods based on learned priors can suffer from extensive inference times or limited generalization performance. Here, we introduce a novel physics-driven method for MPI reconstruction based on a deep equilibrium model with learned data consistency (DEQ-MPI). DEQ-MPI reconstructs images by augmenting neural networks into an iterative optimization, as inspired by unrolling methods in deep learning. Yet, conventional unrolling methods are computationally restricted to few iterations resulting in non-convergent solutions, and they use hand-crafted consistency measures that can yield suboptimal capture of the data distribution. DEQ-MPI instead trains an implicit mapping to maximize the quality of a convergent solution, and it incorporates a learned consistency measure to better account for the data distribution. Demonstrations on simulated and experimental data indicate that DEQ-MPI achieves superior image quality and competitive inference time to state-of-the-art MPI reconstruction methods.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":" ","pages":""},"PeriodicalIF":10.6,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45398959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Stable deep MRI reconstruction using Generative Priors 基于生成先验的稳定深部MRI重建
IF 10.6 1区 医学
IEEE Transactions on Medical Imaging Pub Date : 2022-10-25 DOI: 10.48550/arXiv.2210.13834
Martin Zach, F. Knoll, T. Pock
{"title":"Stable deep MRI reconstruction using Generative Priors","authors":"Martin Zach, F. Knoll, T. Pock","doi":"10.48550/arXiv.2210.13834","DOIUrl":"https://doi.org/10.48550/arXiv.2210.13834","url":null,"abstract":"Data-driven approaches recently achieved remarkable success in magnetic resonance imaging (MRI) reconstruction, but integration into clinical routine remains challenging due to a lack of generalizability and interpretability. In this paper, we address these challenges in a unified framework based on generative image priors. We propose a novel deep neural network based regularizer which is trained in a generative setting on reference magnitude images only. After training, the regularizer encodes higher-level domain statistics which we demonstrate by synthesizing images without data. Embedding the trained model in a classical variational approach yields high-quality reconstructions irrespective of the sub-sampling pattern. In addition, the model shows stable behavior when confronted with out-of-distribution data in the form of contrast variation. Furthermore, a probabilistic interpretation provides a distribution of reconstructions and hence allows uncertainty quantification. To reconstruct parallel MRI, we propose a fast algorithm to jointly estimate the image and the sensitivity maps. The results demonstrate competitive performance, on par with state-of-the-art end-to-end deep learning methods, while preserving the flexibility with respect to sub-sampling patterns and allowing for uncertainty quantification.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":" ","pages":""},"PeriodicalIF":10.6,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45098550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信