{"title":"基于子空间生成模型学习后验分布的无监督脑损伤分割。","authors":"Huixiang Zhuang,Yue Guan,Yi Ding,Chang Xu,Zijun Cheng,Yuhao Ma,Ruihao Liu,Ziyu Meng,Cao Li,Yao Li,Zhi-Pei Liang","doi":"10.1109/tmi.2025.3597080","DOIUrl":null,"url":null,"abstract":"Unsupervised brain lesion segmentation, focusing on learning normative distributions from images of healthy subjects, are less dependent on lesion-labeled data, thus exhibiting better generalization capabilities. A fundamental challenge in learning normative distributions of images lies in the high dimensionality if image pixels are treated as correlated random variables to capture spatial dependence. In this study, we proposed a subspace-based deep generative model to learn the posterior normal distributions. Specifically, we used probabilistic subspace models to capture spatial-intensity distributions and spatial-structure distributions of brain images from healthy subjects. These models captured prior spatial-intensity and spatial-structure variations effectively by treating the subspace coefficients as random variables with basis functions being the eigen-images and eigen-density functions learned from the training data. These prior distributions were then converted to posterior distributions, including both the posterior normal and posterior lesion distributions for a given image using the subspace-based generative model and subspace-assisted Bayesian analysis, respectively. Finally, an unsupervised fusion classifier was used to combine the posterior and likelihood features for lesion segmentation. The proposed method has been evaluated on simulated and real lesion data, including tumor, multiple sclerosis, and stroke, demonstrating superior segmentation accuracy and robustness over the state-of-the-art methods. Our proposed method holds promise for enhancing unsupervised brain lesion delineation in clinical applications.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":"699 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised Brain Lesion Segmentation Using Posterior Distributions Learned by Subspace-based Generative Model.\",\"authors\":\"Huixiang Zhuang,Yue Guan,Yi Ding,Chang Xu,Zijun Cheng,Yuhao Ma,Ruihao Liu,Ziyu Meng,Cao Li,Yao Li,Zhi-Pei Liang\",\"doi\":\"10.1109/tmi.2025.3597080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsupervised brain lesion segmentation, focusing on learning normative distributions from images of healthy subjects, are less dependent on lesion-labeled data, thus exhibiting better generalization capabilities. A fundamental challenge in learning normative distributions of images lies in the high dimensionality if image pixels are treated as correlated random variables to capture spatial dependence. In this study, we proposed a subspace-based deep generative model to learn the posterior normal distributions. Specifically, we used probabilistic subspace models to capture spatial-intensity distributions and spatial-structure distributions of brain images from healthy subjects. These models captured prior spatial-intensity and spatial-structure variations effectively by treating the subspace coefficients as random variables with basis functions being the eigen-images and eigen-density functions learned from the training data. These prior distributions were then converted to posterior distributions, including both the posterior normal and posterior lesion distributions for a given image using the subspace-based generative model and subspace-assisted Bayesian analysis, respectively. Finally, an unsupervised fusion classifier was used to combine the posterior and likelihood features for lesion segmentation. The proposed method has been evaluated on simulated and real lesion data, including tumor, multiple sclerosis, and stroke, demonstrating superior segmentation accuracy and robustness over the state-of-the-art methods. Our proposed method holds promise for enhancing unsupervised brain lesion delineation in clinical applications.\",\"PeriodicalId\":13418,\"journal\":{\"name\":\"IEEE Transactions on Medical Imaging\",\"volume\":\"699 1\",\"pages\":\"\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Medical Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/tmi.2025.3597080\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Medical Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/tmi.2025.3597080","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Unsupervised Brain Lesion Segmentation Using Posterior Distributions Learned by Subspace-based Generative Model.
Unsupervised brain lesion segmentation, focusing on learning normative distributions from images of healthy subjects, are less dependent on lesion-labeled data, thus exhibiting better generalization capabilities. A fundamental challenge in learning normative distributions of images lies in the high dimensionality if image pixels are treated as correlated random variables to capture spatial dependence. In this study, we proposed a subspace-based deep generative model to learn the posterior normal distributions. Specifically, we used probabilistic subspace models to capture spatial-intensity distributions and spatial-structure distributions of brain images from healthy subjects. These models captured prior spatial-intensity and spatial-structure variations effectively by treating the subspace coefficients as random variables with basis functions being the eigen-images and eigen-density functions learned from the training data. These prior distributions were then converted to posterior distributions, including both the posterior normal and posterior lesion distributions for a given image using the subspace-based generative model and subspace-assisted Bayesian analysis, respectively. Finally, an unsupervised fusion classifier was used to combine the posterior and likelihood features for lesion segmentation. The proposed method has been evaluated on simulated and real lesion data, including tumor, multiple sclerosis, and stroke, demonstrating superior segmentation accuracy and robustness over the state-of-the-art methods. Our proposed method holds promise for enhancing unsupervised brain lesion delineation in clinical applications.
期刊介绍:
The IEEE Transactions on Medical Imaging (T-MI) is a journal that welcomes the submission of manuscripts focusing on various aspects of medical imaging. The journal encourages the exploration of body structure, morphology, and function through different imaging techniques, including ultrasound, X-rays, magnetic resonance, radionuclides, microwaves, and optical methods. It also promotes contributions related to cell and molecular imaging, as well as all forms of microscopy.
T-MI publishes original research papers that cover a wide range of topics, including but not limited to novel acquisition techniques, medical image processing and analysis, visualization and performance, pattern recognition, machine learning, and other related methods. The journal particularly encourages highly technical studies that offer new perspectives. By emphasizing the unification of medicine, biology, and imaging, T-MI seeks to bridge the gap between instrumentation, hardware, software, mathematics, physics, biology, and medicine by introducing new analysis methods.
While the journal welcomes strong application papers that describe novel methods, it directs papers that focus solely on important applications using medically adopted or well-established methods without significant innovation in methodology to other journals. T-MI is indexed in Pubmed® and Medline®, which are products of the United States National Library of Medicine.