{"title":"Point Cloud Registration in Laparoscopic Liver Surgery Using Keypoint Correspondence Registration Network","authors":"Yirui Zhang, Yanni Zou, Peter X. Liu","doi":"10.1109/tmi.2024.3457228","DOIUrl":"https://doi.org/10.1109/tmi.2024.3457228","url":null,"abstract":"","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":"103 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142166141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexis Leconte, Jonathan Porée, Brice Rauby, Alice Wu, Nin Ghigo, Paul Xing, Stephen LEE, Chloé Bourquin, Gerardo Ramos-Palacios, Abbas F. Sadikot, Jean Provost
{"title":"A Tracking prior to Localization workflow for Ultrasound Localization Microscopy","authors":"Alexis Leconte, Jonathan Porée, Brice Rauby, Alice Wu, Nin Ghigo, Paul Xing, Stephen LEE, Chloé Bourquin, Gerardo Ramos-Palacios, Abbas F. Sadikot, Jean Provost","doi":"10.1109/tmi.2024.3456676","DOIUrl":"https://doi.org/10.1109/tmi.2024.3456676","url":null,"abstract":"","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":"104 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yilin Luo, Hsuan-Kai Huang, Karteekeya Sastry, Peng Hu, Xin Tong, Joseph Kuo, Yousuf Aborahama, Shuai Na, Umberto Villa, Mark A. Anastasio, Lihong V. Wang
{"title":"Full-wave Image Reconstruction in Transcranial Photoacoustic Computed Tomography using a Finite Element Method","authors":"Yilin Luo, Hsuan-Kai Huang, Karteekeya Sastry, Peng Hu, Xin Tong, Joseph Kuo, Yousuf Aborahama, Shuai Na, Umberto Villa, Mark A. Anastasio, Lihong V. Wang","doi":"10.1109/tmi.2024.3456595","DOIUrl":"https://doi.org/10.1109/tmi.2024.3456595","url":null,"abstract":"","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":"22 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenting Chen, Jie Liu, Tommy W.S. Chow, Yixuan Yuan
{"title":"STAR-RL: Spatial-temporal Hierarchical Reinforcement Learning for Interpretable Pathology Image Super-Resolution","authors":"Wenting Chen, Jie Liu, Tommy W.S. Chow, Yixuan Yuan","doi":"10.1109/tmi.2024.3419809","DOIUrl":"https://doi.org/10.1109/tmi.2024.3419809","url":null,"abstract":"","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":"47 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141462332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chengkang Shen, Hao Zhu, You Zhou, Yu Liu, Si Yi, Lili Dong, Weipeng Zhao, David J. Brady, Xun Cao, Zhan Ma, Yi Lin
{"title":"Continuous 3D Myocardial Motion Tracking via Echocardiography","authors":"Chengkang Shen, Hao Zhu, You Zhou, Yu Liu, Si Yi, Lili Dong, Weipeng Zhao, David J. Brady, Xun Cao, Zhan Ma, Yi Lin","doi":"10.1109/tmi.2024.3419780","DOIUrl":"https://doi.org/10.1109/tmi.2024.3419780","url":null,"abstract":"","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":"30 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141462351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IMJENSE: Scan-specific Implicit Representation for Joint Coil Sensitivity and Image Estimation in Parallel MRI","authors":"Rui-jun Feng, Qing Wu, Jie Feng, Huajun She, Chunlei Liu, Yuyao Zhang, Hongjiang Wei","doi":"10.48550/arXiv.2311.12892","DOIUrl":"https://doi.org/10.48550/arXiv.2311.12892","url":null,"abstract":"Parallel imaging is a commonly used technique to accelerate magnetic resonance imaging (MRI) data acquisition. Mathematically, parallel MRI reconstruction can be formulated as an inverse problem relating the sparsely sampled k-space measurements to the desired MRI image. Despite the success of many existing reconstruction algorithms, it remains a challenge to reliably reconstruct a high-quality image from highly reduced k-space measurements. Recently, implicit neural representation has emerged as a powerful paradigm to exploit the internal information and the physics of partially acquired data to generate the desired object. In this study, we introduced IMJENSE, a scan-specific implicit neural representation-based method for improving parallel MRI reconstruction. Specifically, the underlying MRI image and coil sensitivities were modeled as continuous functions of spatial coordinates, parameterized by neural networks and polynomials, respectively. The weights in the networks and coefficients in the polynomials were simultaneously learned directly from sparsely acquired k-space measurements, without fully sampled ground truth data for training. Benefiting from the powerful continuous representation and joint estimation of the MRI image and coil sensitivities, IMJENSE outperforms conventional image or k-space domain reconstruction algorithms. With extremely limited calibration data, IMJENSE is more stable than supervised calibrationless and calibration-based deep-learning methods. Results show that IMJENSE robustly reconstructs the images acquired at 5× and 6× accelerations with only 4 or 8 calibration lines in 2D Cartesian acquisitions, corresponding to 22.0% and 19.5% undersampling rates. The high-quality results and scanning specificity make the proposed method hold the potential for further accelerating the data acquisition of parallel MRI.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":"202 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139254245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Learnable Counter-condition Analysis Framework for Functional Connectivity-based Neurological Disorder Diagnosis","authors":"Eunsong Kang, Da-Woon Heo, Jiwon Lee, Heung-Il Suk","doi":"10.48550/arXiv.2310.03964","DOIUrl":"https://doi.org/10.48550/arXiv.2310.03964","url":null,"abstract":"To understand the biological characteristics of neurological disorders with functional connectivity (FC), recent studies have widely utilized deep learning-based models to identify the disease and conducted post-hoc analyses via explainable models to discover disease-related biomarkers. Most existing frameworks consist of three stages, namely, feature selection, feature extraction for classification, and analysis, where each stage is implemented separately. However, if the results at each stage lack reliability, it can cause misdiagnosis and incorrect analysis in afterward stages. In this study, we propose a novel unified framework that systemically integrates diagnoses (i.e., feature selection and feature extraction) and explanations. Notably, we devised an adaptive attention network as a feature selection approach to identify individual-specific disease-related connections. We also propose a functional network relational encoder that summarizes the global topological properties of FC by learning the inter-network relations without pre-defined edges between functional networks. Last but not least, our framework provides a novel explanatory power for neuroscientific interpretation, also termed counter-condition analysis. We simulated the FC that reverses the diagnostic information (i.e., counter-condition FC): converting a normal brain to be abnormal and vice versa. We validated the effectiveness of our framework by using two large resting-state functional magnetic resonance imaging (fMRI) datasets, Autism Brain Imaging Data Exchange (ABIDE) and REST-meta-MDD, and demonstrated that our framework outperforms other competing methods for disease identification. Furthermore, we analyzed the disease-related neurological patterns based on counter-condition analysis.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":"8 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139322196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}