Xiaoyu Zhu,Shiyin Li,HongLiang Bi,Lina Guan,Haiyang Liu,Zhaolin Lu
{"title":"Automatic Choroid Segmentation and Thickness Measurement Based on Mixed Attention-guided Multiscale Feature Fusion Network.","authors":"Xiaoyu Zhu,Shiyin Li,HongLiang Bi,Lina Guan,Haiyang Liu,Zhaolin Lu","doi":"10.1109/tmi.2025.3597026","DOIUrl":null,"url":null,"abstract":"Choroidal thickness variations serve as critical biomarkers for numerous ophthalmic diseases. Accurate segmentation and quantification of the choroid in optical coherence tomography (OCT) images is essential for clinical diagnosis and disease progression monitoring. Due to the small number of disease types in the public OCT dataset involving changes in choroidal thickness and the lack of a publicly available labeled dataset, we constructed the Xuzhou Municipal Hospital (XZMH)-Choroid dataset. This dataset contains annotated OCT images of normal and eight choroid-related diseases. However, segmentation of the choroid in OCT images remains a formidable challenge due to the confounding factors of blurred boundaries, non-uniform texture, and lesions. To overcome these challenges, we proposed a mixed attention-guided multiscale feature fusion network (MAMFF-Net). This network integrates a Mixed Attention Encoder (MAE) for enhanced fine-grained feature extraction, a deformable multiscale feature fusion path (DMFFP) for adaptive feature integration across lesion deformations, and a multiscale pyramid layer aggregation (MPLA) module for improved contextual representation learning. Through comparative experiments with other deep learning methods, we found that the MAMFF-Net model has better segmentation performance than other deep learning methods (mDice: 97.44, mIoU: 95.11, mAcc: 97.71). Based on the choroidal segmentation implemented in MAMFF-Net, an algorithm for automated choroidal thickness measurement was developed, and the automated measurement results approached the level of senior specialists.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":"113 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Medical Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/tmi.2025.3597026","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Choroidal thickness variations serve as critical biomarkers for numerous ophthalmic diseases. Accurate segmentation and quantification of the choroid in optical coherence tomography (OCT) images is essential for clinical diagnosis and disease progression monitoring. Due to the small number of disease types in the public OCT dataset involving changes in choroidal thickness and the lack of a publicly available labeled dataset, we constructed the Xuzhou Municipal Hospital (XZMH)-Choroid dataset. This dataset contains annotated OCT images of normal and eight choroid-related diseases. However, segmentation of the choroid in OCT images remains a formidable challenge due to the confounding factors of blurred boundaries, non-uniform texture, and lesions. To overcome these challenges, we proposed a mixed attention-guided multiscale feature fusion network (MAMFF-Net). This network integrates a Mixed Attention Encoder (MAE) for enhanced fine-grained feature extraction, a deformable multiscale feature fusion path (DMFFP) for adaptive feature integration across lesion deformations, and a multiscale pyramid layer aggregation (MPLA) module for improved contextual representation learning. Through comparative experiments with other deep learning methods, we found that the MAMFF-Net model has better segmentation performance than other deep learning methods (mDice: 97.44, mIoU: 95.11, mAcc: 97.71). Based on the choroidal segmentation implemented in MAMFF-Net, an algorithm for automated choroidal thickness measurement was developed, and the automated measurement results approached the level of senior specialists.
期刊介绍:
The IEEE Transactions on Medical Imaging (T-MI) is a journal that welcomes the submission of manuscripts focusing on various aspects of medical imaging. The journal encourages the exploration of body structure, morphology, and function through different imaging techniques, including ultrasound, X-rays, magnetic resonance, radionuclides, microwaves, and optical methods. It also promotes contributions related to cell and molecular imaging, as well as all forms of microscopy.
T-MI publishes original research papers that cover a wide range of topics, including but not limited to novel acquisition techniques, medical image processing and analysis, visualization and performance, pattern recognition, machine learning, and other related methods. The journal particularly encourages highly technical studies that offer new perspectives. By emphasizing the unification of medicine, biology, and imaging, T-MI seeks to bridge the gap between instrumentation, hardware, software, mathematics, physics, biology, and medicine by introducing new analysis methods.
While the journal welcomes strong application papers that describe novel methods, it directs papers that focus solely on important applications using medically adopted or well-established methods without significant innovation in methodology to other journals. T-MI is indexed in Pubmed® and Medline®, which are products of the United States National Library of Medicine.