{"title":"一种无监督学习方法在无配对训练数据的情况下从0.3T MRI重建3t样图像。","authors":"Huaishui Yang,Shaojun Liu,Yilong Liu,Lingyan Zhang,Shoujin Huang,Jiayu Zheng,Jingzhe Liu,Hua Guo,Ed X Wu,Mengye Lyu","doi":"10.1109/tmi.2025.3597401","DOIUrl":null,"url":null,"abstract":"Magnetic resonance imaging (MRI) is powerful in medical diagnostics, yet high-field MRI, despite offering superior image quality, incurs significant costs for procurement, installation, maintenance, and operation, restricting its availability and accessibility, especially in low- and middle-income countries. Addressing this, our study proposes an unsupervised learning algorithm based on cycle-consistent generative adversarial networks. This framework transforms 0.3T low-field MRI into higher-quality 3T-like images, bypassing the need for paired low/high-field training data. The proposed architecture integrates two novel modules to enhance reconstruction quality: (1) an attention block that dynamically balances high-field-like features with the original low-field input, and (2) an edge block that refines boundary details, providing more accurate structural reconstruction. The proposed generative model is trained on large-scale, unpaired, public datasets, and further validated on paired low/high-field acquisitions of three major clinical MRI sequences: T1-weighted, T2-weighted, and fluid-attenuated inversion recovery (FLAIR) imaging. It demonstrates notable improvements in tissue contrast and signal-to-noise ratio while preserving anatomical fidelity. This approach utilizes rich information from publicly available MRI resources, providing a data-efficient unsupervised alternative that complements supervised methods to enhance the utility of low-field MRI.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":"12 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Unsupervised Learning Approach for Reconstructing 3T-Like Images from 0.3T MRI Without Paired Training Data.\",\"authors\":\"Huaishui Yang,Shaojun Liu,Yilong Liu,Lingyan Zhang,Shoujin Huang,Jiayu Zheng,Jingzhe Liu,Hua Guo,Ed X Wu,Mengye Lyu\",\"doi\":\"10.1109/tmi.2025.3597401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic resonance imaging (MRI) is powerful in medical diagnostics, yet high-field MRI, despite offering superior image quality, incurs significant costs for procurement, installation, maintenance, and operation, restricting its availability and accessibility, especially in low- and middle-income countries. Addressing this, our study proposes an unsupervised learning algorithm based on cycle-consistent generative adversarial networks. This framework transforms 0.3T low-field MRI into higher-quality 3T-like images, bypassing the need for paired low/high-field training data. The proposed architecture integrates two novel modules to enhance reconstruction quality: (1) an attention block that dynamically balances high-field-like features with the original low-field input, and (2) an edge block that refines boundary details, providing more accurate structural reconstruction. The proposed generative model is trained on large-scale, unpaired, public datasets, and further validated on paired low/high-field acquisitions of three major clinical MRI sequences: T1-weighted, T2-weighted, and fluid-attenuated inversion recovery (FLAIR) imaging. It demonstrates notable improvements in tissue contrast and signal-to-noise ratio while preserving anatomical fidelity. This approach utilizes rich information from publicly available MRI resources, providing a data-efficient unsupervised alternative that complements supervised methods to enhance the utility of low-field MRI.\",\"PeriodicalId\":13418,\"journal\":{\"name\":\"IEEE Transactions on Medical Imaging\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Medical Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/tmi.2025.3597401\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Medical Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/tmi.2025.3597401","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
An Unsupervised Learning Approach for Reconstructing 3T-Like Images from 0.3T MRI Without Paired Training Data.
Magnetic resonance imaging (MRI) is powerful in medical diagnostics, yet high-field MRI, despite offering superior image quality, incurs significant costs for procurement, installation, maintenance, and operation, restricting its availability and accessibility, especially in low- and middle-income countries. Addressing this, our study proposes an unsupervised learning algorithm based on cycle-consistent generative adversarial networks. This framework transforms 0.3T low-field MRI into higher-quality 3T-like images, bypassing the need for paired low/high-field training data. The proposed architecture integrates two novel modules to enhance reconstruction quality: (1) an attention block that dynamically balances high-field-like features with the original low-field input, and (2) an edge block that refines boundary details, providing more accurate structural reconstruction. The proposed generative model is trained on large-scale, unpaired, public datasets, and further validated on paired low/high-field acquisitions of three major clinical MRI sequences: T1-weighted, T2-weighted, and fluid-attenuated inversion recovery (FLAIR) imaging. It demonstrates notable improvements in tissue contrast and signal-to-noise ratio while preserving anatomical fidelity. This approach utilizes rich information from publicly available MRI resources, providing a data-efficient unsupervised alternative that complements supervised methods to enhance the utility of low-field MRI.
期刊介绍:
The IEEE Transactions on Medical Imaging (T-MI) is a journal that welcomes the submission of manuscripts focusing on various aspects of medical imaging. The journal encourages the exploration of body structure, morphology, and function through different imaging techniques, including ultrasound, X-rays, magnetic resonance, radionuclides, microwaves, and optical methods. It also promotes contributions related to cell and molecular imaging, as well as all forms of microscopy.
T-MI publishes original research papers that cover a wide range of topics, including but not limited to novel acquisition techniques, medical image processing and analysis, visualization and performance, pattern recognition, machine learning, and other related methods. The journal particularly encourages highly technical studies that offer new perspectives. By emphasizing the unification of medicine, biology, and imaging, T-MI seeks to bridge the gap between instrumentation, hardware, software, mathematics, physics, biology, and medicine by introducing new analysis methods.
While the journal welcomes strong application papers that describe novel methods, it directs papers that focus solely on important applications using medically adopted or well-established methods without significant innovation in methodology to other journals. T-MI is indexed in Pubmed® and Medline®, which are products of the United States National Library of Medicine.