Nazanin Oroskhani, Seyed Mohammad Amini, Sakine Shirvalilou, Mehdi Khodaie, Seyed Rabi Mahdavi
{"title":"Anti-Proliferative Activity of Poloxamer Cobalt Ferrite Nanoparticles against Human Prostate Cancer (DU-145) Cells: In-Vitro Study","authors":"Nazanin Oroskhani, Seyed Mohammad Amini, Sakine Shirvalilou, Mehdi Khodaie, Seyed Rabi Mahdavi","doi":"10.1049/2024/8929168","DOIUrl":"https://doi.org/10.1049/2024/8929168","url":null,"abstract":"<div>\u0000 <p>Prostate cancer is the second most frequent type of cancer death in men. This study refers to the novel hyperthermia application of poloxamer-coated cobalt ferrite as a new approach for thermal eradication of DU-145 human prostate cancerous cells under a radio frequency magnetic field (RF-MF). The hydrothermal method was applied for the synthesis of cobalt ferrite nanoparticles. Then, the structure, size, and morphology of nanoparticle were characterized. The cytotoxicity of the synthesized nanoparticles and RF-MF exposure on DU-145 prostate cancer cells was investigated separately or in combination with colony formation methods and MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay. Transmission electron microscopy (TEM) confirmed the spherical morphology of nanoparticles with a size of 5.5 ± 2.6 nm. The temperature of cells treated with nanoparticles under RF-MF reached 42.73 ± 0.2°C after 15 min. RF-MF treatment or nanoparticles have not affected cell viability significantly. However, the combination of them eradicated 53% ± 4% of cancerous cells. In-vitro hyperthermia was performed on human prostate cancer cells (DU-145) with cobalt ferrite nanoparticles at specific concentrations that demonstrated a decrease in survival fraction based on colony formation assay compared to cells that were treated alone with nanoparticles or with RF-MF.</p>\u0000 </div>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"2024 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/8929168","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141096439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cancer Vaccines Designed Based the Nanoparticle and Tumor Cells for the Treatment of Tumors: A Perspective","authors":"Qing-Juan Wu, Wen-Liang Lv","doi":"10.1049/2024/5593879","DOIUrl":"10.1049/2024/5593879","url":null,"abstract":"<div>\u0000 <p>Cancer vaccines based on tumor cell components have shown promising results in animal and clinical studies. The vaccine system contains abundant tumor antigen components, which can activate the immune system by antigens. However, their efficacy has been limited by the inability of antigens delivery, which are the core components of vaccines, further fail to be presented and activation of effective cells. Nanotechnology offers a novel platform to enhance the immunogenicity of tumor-associated antigens and deliver them to antigen-presenting cells (APCs) more efficiently. In addition, nanotreatment of tumor cells derivate active ingredients could also help improve the effectiveness of cancer vaccines. In this review, we summarize recent advances in the development of cancer vaccines by the combination of nanotechnology and tumor-based ingredients, including liposomes, polymeric nanoparticles, metallic nanoparticles, virus-like particles and tumor cells membrane, tumor lysate, and specific tumor antigens. These nanovaccines have been designed to increase antigen uptake, prolong antigen presentation, and modulate immune responses through codelivery of immunostimulatory agents. We also further discuss challenges and opportunities in the clinical translation of these nanovaccines.</p>\u0000 </div>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"2024 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/5593879","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140433980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancement of Therapeutic Potential of Oncolytic Virus with Homologous Tumor Cell Membranes for Pancreatic Cancer","authors":"Wei Chen, Hui Liu, Yue Chen, Meng Gao","doi":"10.1049/2024/9970665","DOIUrl":"10.1049/2024/9970665","url":null,"abstract":"<div>\u0000 <p>Pancreatic cancer is a leading cause of cancer-related deaths worldwide. Conventional therapies often provide limited success, necessitating the need for novel therapeutic strategies. Oncolytic viruses (OVs) are a class of viruses that specifically target and kill cancer cells while leaving normal cells unharmed. These viruses have shown promise in the treatment of various cancers, including pancreatic cancer. However, their use in clinical settings has been limited by several factors. Their inability to efficiently infect and kill tumor cells. To overcome this limitation, a cell membrane-coated oncolytic virus was developed. However, the necessity of homologous and nonhomologous tumor cell membranes for their function has not yet been proven. This novel virus displayed increased infectivity and killing activity against tumor cells compared to nonhomologous tumor cell membranes and noncoated viruses. We believe that the homologous tumor cell membranes-coated OVs can enhance the therapeutic potential for pancreatic cancer therapy.</p>\u0000 </div>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"2024 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/9970665","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139779999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of an Antibacterial Coating Layer via Amine-Terminated Hyperbranched Zirconium–Polysiloxane for Stainless Steel Orthodontic Brackets","authors":"Yaxin Qu, Xinwei Lu, Tingting Zhu, Jie Yu, Zhe Zhang, Yu Sun, Yuanping Hao, Yuanfei Wang, Yanling Yu","doi":"10.1049/2024/4391833","DOIUrl":"10.1049/2024/4391833","url":null,"abstract":"<div>\u0000 <p>The massive growth of various microorganisms on the orthodontic bracket can form plaques and cause diseases. A novel amine-terminated hyperbranched zirconium–polysiloxane (HPZP) antimicrobial coating was developed for an orthodontic stainless steel tank (SST). After synthesizing HPZP and HPZP-Ag coatings, their structures were characterized by nuclear magnetic resonance spectroscopy, scanning electron microscopy, thickness measurement, contact angle detection, mechanical stability testing, and corrosion testing. The cell toxicity of the two coatings to human gingival fibroblasts (hGFs) and human oral keratinocytes (hOKs) was detected by cell counting kit eight assays, and SST, HPZP@SST, and HPZP-Ag@SST were cocultured with <i>Staphylococcus aureus</i>, <i>Escherichia coli</i>, and <i>Streptococcus mutans</i> for 24 hr to detect the antibacterial properties of the coatings, respectively. The results show that the coatings are about 10 <i>μ</i>m, and the water contact angle of HPZP coating is significantly higher than that of HPZP-Ag coating (<i>P</i> < 0.01). Both coatings can be uniformly and densely distributed on SST and have good mechanical stability and corrosion resistance. The cell counting test showed that HPZP coating and HPZP-Ag coating were less toxic to cells compared with SST, and the toxicity of HPZP-Ag coating was greater than that of HPZP coating, with the cell survival rate greater than 80% after 72 hr cocultured with hGFs and hOKs. The antibacterial test showed that the number of bacteria on the surface of different materials was ranked from small to large: HPZP@SST < HPZP-Ag@SST < SST and 800 <i>μ</i>g/mL HPZP@SST showed a better bactericidal ability than 400 <i>μ</i>g/mL after cocultured <i>with S. aureus</i>, <i>E. coli</i>, and <i>S. mutans</i>, respectively (all <i>P</i> < 0.05). The results showed that HPZP coating had a better effect than HPZP-Ag coating, with effective antibacterial and biocompatible properties, which had the potential to be applied in orthodontic process management.</p>\u0000 </div>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"2024 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/4391833","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139782690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Radioprotective Effect of Selenium Nanoparticles: A Mini Review","authors":"Rasool Azmoonfar, Masoud Moslehi, Daryoush Shahbazi-Gahrouei","doi":"10.1049/2024/5538107","DOIUrl":"10.1049/2024/5538107","url":null,"abstract":"<div>\u0000 <p><i>Background and Objectives</i>. Ionizing radiation is widely used in medical imaging for diagnosis and in radiotherapy for the treatment of various medical conditions. However, ionizing radiation can cause damage to healthy cells and tissues, leading to side effects and an increased risk of cancer and other diseases over time. This study aimed to evaluate the possible radioprotective effect of selenium nanoparticles against the damage caused by ionizing radiation. <i>Materials and Methods</i>. This study followed the PRISMA reporting guidelines to present the results. A comprehensive search was performed on electronic databases such as PubMed, Scopus, Web of Sciences, and Science Direct. Initially, 413 articles were retrieved. After removing duplicates and applying specific inclusion and exclusion criteria, 10 articles were finally included in this systematic review. <i>Results</i>. The reviewed studies showed that selenium nanoparticles had anti-inflammatory and antioxidant properties. They effectively protected the kidneys, liver, and testicles from damage. Furthermore, there was evidence of efficient radioprotection for the organs examined without significant side effects. <i>Conclusions</i>. This systematic review emphasizes the potential advantages of using selenium nanoparticles to prevent the negative effects of ionizing radiation. Importantly, these protective effects were achieved without causing noticeable side effects. These findings suggest the potential role of selenium nanoparticles as radioprotective agents, offering possible therapeutic applications to reduce the risks related to ionizing radiation exposure in medical imaging and radiotherapy procedures.</p>\u0000 </div>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"2024 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/5538107","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139597115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Antibacterial Activity and Mechanisms of Action of Inorganic Nanoparticles against Foodborne Bacterial Pathogens: A Systematic Review","authors":"Abayeneh Girma, Birhanu Abera, Bawoke Mekuye, Gedefaw Mebratie","doi":"10.1049/2024/5417924","DOIUrl":"10.1049/2024/5417924","url":null,"abstract":"<div>\u0000 <p>Foodborne disease outbreaks due to bacterial pathogens and their toxins have become a serious concern for global public health and security. Finding novel antibacterial agents with unique mechanisms of action against the current spoilage and foodborne bacterial pathogens is a central strategy to overcome antibiotic resistance. This study examined the antibacterial activities and mechanisms of action of inorganic nanoparticles (NPs) against foodborne bacterial pathogens. The articles written in English were recovered from registers and databases (PubMed, ScienceDirect, Web of Science, Google Scholar, and Directory of Open Access Journals) and other sources (websites, organizations, and citation searching). “Nanoparticles,” “Inorganic Nanoparticles,” “Metal Nanoparticles,” “Metal–Oxide Nanoparticles,” “Antimicrobial Activity,” “Antibacterial Activity,” “Foodborne Bacterial Pathogens,” “Mechanisms of Action,” and “Foodborne Diseases” were the search terms used to retrieve the articles. The PRISMA-2020 checklist was applied for the article search strategy, article selection, data extraction, and result reporting for the review process. A total of 27 original research articles were included from a total of 3,575 articles obtained from the different search strategies. All studies demonstrated the antibacterial effectiveness of inorganic NPs and highlighted their different mechanisms of action against foodborne bacterial pathogens. In the present study, small-sized, spherical-shaped, engineered, capped, low-dissolution with water, high-concentration NPs, and in Gram-negative bacterial types had high antibacterial activity as compared to their counterparts. Cell wall interaction and membrane penetration, reactive oxygen species production, DNA damage, and protein synthesis inhibition were some of the generalized mechanisms recognized in the current study. Therefore, this study recommends the proper use of nontoxic inorganic nanoparticle products for food processing industries to ensure the quality and safety of food while minimizing antibiotic resistance among foodborne bacterial pathogens.</p>\u0000 </div>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"2024 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/5417924","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139618753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanxue Sun, Yun Bai, Silu Liu, Shuxia Cui, Pengcheng Xu
{"title":"Thermosensitive Micelles Gel to Deliver Quercetin Locally for Enhanced Antibreast Cancer Efficacy: An In Vitro Evaluation","authors":"Yanxue Sun, Yun Bai, Silu Liu, Shuxia Cui, Pengcheng Xu","doi":"10.1049/2023/7971492","DOIUrl":"10.1049/2023/7971492","url":null,"abstract":"<div>\u0000 <p>Although quercetin is low cytotoxicity to normal human cells, quercetin is effective against the growth of some tumors. Given the poor blood stability in vivo, insolubility, low delivery efficiency, and poor medicinal properties of quercetin, we developed a local drug delivery system comprising quercetin core’s polymer micelles and F127 hydrogel stroma. In vitro evaluation revealed that quercetin core’s polymer micelles have excellent antitumor activity and could inhibit the multiplication of 4T1 breast cancer cells through the apoptosis pathway. Meanwhile, a rheological study revealed that the quercetin core’s micelles gel possessed excellent properties of hydrogel formation and injectability of liquid preparation as a local drug delivery system after the quercetin core’s polymer micelles were loaded into the F127 hydrogel stroma. Our study findings indicated that the drug stability and stable release capacity of quercetin were vastly improved with the composite formulation of the micelles gel. This not only realized drug injectability but also drug storage in the semisolid form, which is a more comfortable and slower drug-releasing form that will eventually exert a proper therapeutic effect. In conclusion, quercetin micellar hydrogel system has better antitumor activity and excellent hydrogel properties.</p>\u0000 </div>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"2023 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2023/7971492","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135933626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanoliposomal Coencapsulation of Dorema aucheri Extract and Curcumin; Enhanced Cytotoxicity, Apoptosis Induction, and Inhibition of EGFR Gene Expression in Oral Cancer Cells OCC-02","authors":"Mahshid Azizi, Ghasem Ghalamfarsa, Fatemeh Khosravani, Hassan Bardania, Shahriar Azizi","doi":"10.1049/2023/1745877","DOIUrl":"10.1049/2023/1745877","url":null,"abstract":"<div>\u0000 <p>Curcumin is one of the natural anticancer drugs but its efficiency is limited by low stability, insufficient bioavailability, poor solubility, and poor permeability. <i>Dorema aucheri</i> (Bilhar) is a herb with precious pharmaceutical properties. This study aimed to develop a nanoliposome-based curcumin and Bilhar extract codelivery system. The nanocompounds were synthesized using the lipid thin-film hydration method and characterized by transmission electron microscopy, and dynamic light scattering techniques, and their cytotoxicity and apoptotic effect on the primary oral cancer cell line were evaluated via 2,5-diphenyl-2H-tetrazolium bromide assay and flow cytometry. Moreover, the expression of the epidermal growth factor receptor (EGFR) gene in the treated cells was assessed using the real-time polymerase chain reaction technique. Based on the results, nanoliposomes had a size of 91 ± 10 nm with a polydispersity index of 0.13. Free curcumin, the extract, and the curcumin-extract combination showed dose-dependent toxicity against cancer cells; yet, the extract (IC<sub>50</sub>: 86 <i>µ</i>g/ml) and curcumin-extract (IC<sub>50</sub>: 65 <i>µ</i>g/ml) activities were much more than curcumin (IC<sub>50</sub>: 121 <i>µ</i>g/ml). Also, the curcumin and extract loaded on liposomes showed a dose and time-dependent cytotoxicity. After loading the curcumin-extract compound on nanoliposomes, their IC<sub>50</sub> decreased from 180 <i>µ</i>g/ml (within 24 hr) to 43 <i>µ</i>g/ml (within 72 hr), indicating their sustainable release and activity. Likewise, this compound induced the highest apoptosis percentage (95%) in cancerous cells and inhibited the expression of the EGFR gene in the cells by 81% ± 3%. These findings demonstrated the effectiveness of the Bilhar extract against oral cancer cells. Also, in combination with curcumin, it showed an additive activity that considerably improved after loading on nanoliposomes.</p>\u0000 </div>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"2023 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2023/1745877","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136376651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li Guo, Shanshan Guo, Youlan Gong, Jing Li, Jiandong Li
{"title":"Analysis of the association between glomerular filtration rate, proteinuria and metabolic syndrome in chronic kidney patients based on longitudinal data","authors":"Li Guo, Shanshan Guo, Youlan Gong, Jing Li, Jiandong Li","doi":"10.1049/nbt2.12146","DOIUrl":"10.1049/nbt2.12146","url":null,"abstract":"<p>Chronic kidney disease (CKD) is a group of chronic diseases caused by kidney damage from multiple causes. Metabolic syndrome (MS) manifests as dysfunction of endothelial cells and chronic functional inflammatory states, and may be involved in pathological changes related to renal impairment. Based on longitudinal data analysis of the association between estimated glomerular filtration rate (eGFR), proteinuria and MS in patients with CKD, this study aims to provide new ideas for the pathophysiological mechanism of CKD and a theoretical basis for the early prevention and effective intervention of MS-related kidney damage. A total of 126 patients with CKD were divided into non-MS group and MS group. According to the eGFR level, 126 patients with CKD were divided into G1 group, G2 group, G3a group, G3b group, G4 group and G5 group. Serum markers such as eGFR, urine protein, and triglycerides (TG) were collected. The correlation between eGFR, urine protein and MS-related indexes was analysed, and the risk factors affecting CKD complicated by MS were analysed. In patients with CKD, the levels of urine protein, abdominal circumference, TG, systolic blood pressure (SBP), diastolic blood pressure (DBP), and fasting blood glucose (FPG) were increased with the course of the disease, but the levels of eGFR and high density lipoprotein (HDL-C) were decreased (<i>p</i> < 0.05). Abdominal circumference, TG, SBP, DBP, FP were significantly negatively correlated with eGFR, but HDL-C was positively correlated with eGFR (<i>p</i> < 0.05). Diabetes, hyperlipidemia, UA, and SBP were independent risk factors affecting CKD complicated MS, and eGFR were independent protective factors (<i>p</i> < 0.05). The combination of diabetes, hyperlipidemia, UA, SBP, and eGFR exhibited higher prediction value for the CKD patients complicated by MS. There was a certain correlation between between MS components with eGFR and urinary protein in patients with CKD. The early intervention treatment of MS was helpful in delaying the development of CKD and reducing proteinuria.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 5","pages":"476-484"},"PeriodicalIF":2.3,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e2/0d/NBT2-17-476.PMC10374549.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10250638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Natural compound chaetocin induced DNA damage and apoptosis through reactive oxygen species-dependent pathways in A549 lung cancer cells and in vitro evaluations","authors":"Qi Zhang, Feng Ruan, Maonan Yang, Qinghui Wen","doi":"10.1049/nbt2.12144","DOIUrl":"10.1049/nbt2.12144","url":null,"abstract":"<p>There is an urgent need for potential pharmaceutics for lung cancer treatment due to the increased number of lung cancer deaths and the resistance of cancer cells to present therapeutics. The present work aims to discover the anticancer potential of the natural compound chaetocin as a therapeutic for lung cancer treatment. Results showed the significance of chaetocin-induced cell growth inhibition by the expression of G<sub>2</sub>/M phase arrest and reactive oxygen species (ROS) dependent apoptosis in A549 lung cancer cells. Results concluded that chaetocin could produce ROS and nuclear damage against A549 lung cancer cells. Interestingly, chaetocin exhibits a significant level of CD47 that down-regulates the expression of CD47 at mRNA levels. PBMC biocompatibility study revealed that chaetocin is non-toxic to normal cells. Overall, experimental results suggested that chaetocin induces A549 cell apoptosis, by causing ROS and nuclear damage activation pathways. In the future, chaetocin might be an effective bio-safe anticancer agent for lung cancer treatments.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 5","pages":"465-475"},"PeriodicalIF":2.3,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7a/14/NBT2-17-465.PMC10374551.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10269010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}