Cancer Vaccines Designed Based the Nanoparticle and Tumor Cells for the Treatment of Tumors: A Perspective

IF 3.8 4区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS
Qing-Juan Wu, Wen-Liang Lv
{"title":"Cancer Vaccines Designed Based the Nanoparticle and Tumor Cells for the Treatment of Tumors: A Perspective","authors":"Qing-Juan Wu,&nbsp;Wen-Liang Lv","doi":"10.1049/2024/5593879","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Cancer vaccines based on tumor cell components have shown promising results in animal and clinical studies. The vaccine system contains abundant tumor antigen components, which can activate the immune system by antigens. However, their efficacy has been limited by the inability of antigens delivery, which are the core components of vaccines, further fail to be presented and activation of effective cells. Nanotechnology offers a novel platform to enhance the immunogenicity of tumor-associated antigens and deliver them to antigen-presenting cells (APCs) more efficiently. In addition, nanotreatment of tumor cells derivate active ingredients could also help improve the effectiveness of cancer vaccines. In this review, we summarize recent advances in the development of cancer vaccines by the combination of nanotechnology and tumor-based ingredients, including liposomes, polymeric nanoparticles, metallic nanoparticles, virus-like particles and tumor cells membrane, tumor lysate, and specific tumor antigens. These nanovaccines have been designed to increase antigen uptake, prolong antigen presentation, and modulate immune responses through codelivery of immunostimulatory agents. We also further discuss challenges and opportunities in the clinical translation of these nanovaccines.</p>\n </div>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"2024 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/5593879","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/5593879","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer vaccines based on tumor cell components have shown promising results in animal and clinical studies. The vaccine system contains abundant tumor antigen components, which can activate the immune system by antigens. However, their efficacy has been limited by the inability of antigens delivery, which are the core components of vaccines, further fail to be presented and activation of effective cells. Nanotechnology offers a novel platform to enhance the immunogenicity of tumor-associated antigens and deliver them to antigen-presenting cells (APCs) more efficiently. In addition, nanotreatment of tumor cells derivate active ingredients could also help improve the effectiveness of cancer vaccines. In this review, we summarize recent advances in the development of cancer vaccines by the combination of nanotechnology and tumor-based ingredients, including liposomes, polymeric nanoparticles, metallic nanoparticles, virus-like particles and tumor cells membrane, tumor lysate, and specific tumor antigens. These nanovaccines have been designed to increase antigen uptake, prolong antigen presentation, and modulate immune responses through codelivery of immunostimulatory agents. We also further discuss challenges and opportunities in the clinical translation of these nanovaccines.

Abstract Image

基于纳米粒子和肿瘤细胞设计的癌症疫苗用于治疗肿瘤:透视
基于肿瘤细胞成分的癌症疫苗已在动物和临床研究中显示出良好的效果。疫苗系统含有丰富的肿瘤抗原成分,可以通过抗原激活免疫系统。然而,作为疫苗核心成分的抗原递送无法进一步呈现和激活有效细胞,从而限制了疫苗的疗效。纳米技术为增强肿瘤相关抗原的免疫原性并将其更有效地递送至抗原呈递细胞(APCs)提供了一个新平台。此外,纳米处理肿瘤细胞衍生活性成分也有助于提高癌症疫苗的有效性。在这篇综述中,我们总结了通过将纳米技术与基于肿瘤的成分(包括脂质体、聚合物纳米颗粒、金属纳米颗粒、病毒样颗粒和肿瘤细胞膜、肿瘤裂解液和特定肿瘤抗原)相结合来开发癌症疫苗的最新进展。这些纳米疫苗的设计目的是提高抗原吸收率、延长抗原呈递时间,并通过联合递送免疫刺激剂调节免疫反应。我们还进一步讨论了这些纳米疫苗在临床应用中面临的挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET nanobiotechnology
IET nanobiotechnology 工程技术-纳米科技
CiteScore
6.20
自引率
4.30%
发文量
34
审稿时长
1 months
期刊介绍: Electrical and electronic engineers have a long and illustrious history of contributing new theories and technologies to the biomedical sciences. This includes the cable theory for understanding the transmission of electrical signals in nerve axons and muscle fibres; dielectric techniques that advanced the understanding of cell membrane structures and membrane ion channels; electron and atomic force microscopy for investigating cells at the molecular level. Other engineering disciplines, along with contributions from the biological, chemical, materials and physical sciences, continue to provide groundbreaking contributions to this subject at the molecular and submolecular level. Our subject now extends from single molecule measurements using scanning probe techniques, through to interactions between cells and microstructures, micro- and nano-fluidics, and aspects of lab-on-chip technologies. The primary aim of IET Nanobiotechnology is to provide a vital resource for academic and industrial researchers operating in this exciting cross-disciplinary activity. We can only achieve this by publishing cutting edge research papers and expert review articles from the international engineering and scientific community. To attract such contributions we will exercise a commitment to our authors by ensuring that their manuscripts receive rapid constructive peer opinions and feedback across interdisciplinary boundaries. IET Nanobiotechnology covers all aspects of research and emerging technologies including, but not limited to: Fundamental theories and concepts applied to biomedical-related devices and methods at the micro- and nano-scale (including methods that employ electrokinetic, electrohydrodynamic, and optical trapping techniques) Micromachining and microfabrication tools and techniques applied to the top-down approach to nanobiotechnology Nanomachining and nanofabrication tools and techniques directed towards biomedical and biotechnological applications (e.g. applications of atomic force microscopy, scanning probe microscopy and related tools) Colloid chemistry applied to nanobiotechnology (e.g. cosmetics, suntan lotions, bio-active nanoparticles) Biosynthesis (also known as green synthesis) of nanoparticles; to be considered for publication, research papers in this area must be directed principally towards biomedical research and especially if they encompass in vivo models or proofs of concept. We welcome papers that are application-orientated or offer new concepts of substantial biomedical importance Techniques for probing cell physiology, cell adhesion sites and cell-cell communication Molecular self-assembly, including concepts of supramolecular chemistry, molecular recognition, and DNA nanotechnology Societal issues such as health and the environment Special issues. Call for papers: Smart Nanobiosensors for Next-generation Biomedical Applications - https://digital-library.theiet.org/files/IET_NBT_CFP_SNNBA.pdf Selected extended papers from the International conference of the 19th Asian BioCeramic Symposium - https://digital-library.theiet.org/files/IET_NBT_CFP_ABS.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信