{"title":"Pomalidomide in patients with multiple myeloma: potential impact on the reconstitution of a functional T-cell immunity.","authors":"Jiaxin Shen, Francesca Senes, Xiaofen Wen, Patrizia Monti, Shaoze Lin, Claudia Pinna, Andrea Murtas, Luigi Podda, Giuseppina Muntone, Gianni Tidore, Claudia Arru, Luca Sanna, Salvatore Contini, Patrizia Virdis, Leonardo Antonio Sechi, Claudio Fozza","doi":"10.1007/s12026-024-09546-w","DOIUrl":"10.1007/s12026-024-09546-w","url":null,"abstract":"<p><strong>Background: </strong>Pomalidomide, a third-generation oral immunomodulatory drug, exhibits efficacy in patients with relapsed multiple myeloma or those refractory to bortezomib and lenalidomide (RRMM).</p><p><strong>Methods: </strong>In this clinical context, we employed flow cytometry and CDR3 spectratyping to monitor the dynamics of the T-cell repertoire during Pomalidomide treatment, aiming to investigate its potential to reverse the immunological abnormalities characteristic of RRMM.</p><p><strong>Results: </strong>By flow cytometry at baseline we found a significant decrease in CD4 + frequency in MM patients, while CD8 + frequency were significantly higher in patients when compared to controls. Most T cell populations remained stable across all time points, except for CD4 + frequency, which notably decreased from t1 to subsequent assessments. Our investigation revealed as most relevant finding the notable increase in CD4 + expansions and the growing prevalence of patients manifesting these expansions. This pattern is even more evident in patients receiving their treatment until t3 and therefore still responding to treatment with Pomalidomide. We also conducted a comparison of spectratyping data before and after treatment, substantially demonstrating a relatively stable pattern throughout the course of Pomalidomide treatment.</p><p><strong>Conclusions: </strong>These observations imply that Pomalidomide treatment influences the T-cell repertoire, particularly in the CD4 + subpopulation during the later stages of treatment, raising speculation about the potential involvement of these lymphocyte expansions in mechanisms related to antitumor immunity.</p>","PeriodicalId":13389,"journal":{"name":"Immunologic Research","volume":" ","pages":"1470-1478"},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618177/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Circulating CD8 + LGALS9 + T Cell Population Exhibiting Low Cytotoxic Characteristics are Decreased in Patients with Systemic Lupus Erythematosus.","authors":"Qi Li, Guochong Wang, Zihang Yuan, Rui Kang, Yaxin Li, Ayibaota Bahabayi, Ziqi Xiong, Zhonghui Zhang, Chen Liu","doi":"10.1007/s12026-024-09522-4","DOIUrl":"10.1007/s12026-024-09522-4","url":null,"abstract":"<p><p>LGALS9, also known as Galectin-9 and a member of the β-galactosidase family, plays a crucial role in immune regulation. However, its expression and function in CD8 T cells, as well as its association with cytotoxic T lymphocytes (CTL), remain unclear. This study aims to investigate LGALS9 expression patterns in human circulating CD8 T lymphocytes and elucidate its clinical significance in Systemic Lupus Erythematosus (SLE). Blood samples from 56 healthy controls and 50 new-onset SLE patients were collected. Flow cytometry was utilized to analyze LGALS9 expression in circulating CD8 T lymphocytes via intracellular staining. Compared to LGALS9 + CD8 + T cells, LGALS9-CD8 + T cells showed increased secretion of Granzyme B (GZMB) and Perforin, along with elevated expression levels of GPR56, CX3CR1, KLRD1, KLRF1, PD1, and CD29. A higher proportion of Tn (naive T cells) and TCM (central memory T cells) showed LGALS9 positivity, compared to TEM (effector memory T cells) and TEMRA (terminally differentiated effector memory T cells re-expressing CD45RA). Clinically, the downregulation of LGALS9 expression was significant in SLE patients. LGALS9 + CD8 + T cells exhibited an Area Under the Curve (AUC) of 0.6916, while CX3CR1 + in LGALS9 + CD8 + T cells had an AUC of 0.6478, and KLRF1 + had an AUC of 0.6419, for distinguishing SLE from healthy individuals. In conclusion, CD8 + LGALS9 + T cells display characteristics of low cytotoxicity, and their reduction is evident in SLE patients, potentially implicating them in SLE pathogenesis and providing diagnostic assistance.</p>","PeriodicalId":13389,"journal":{"name":"Immunologic Research","volume":" ","pages":"1238-1246"},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141751604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immunologic ResearchPub Date : 2024-12-01Epub Date: 2024-08-03DOI: 10.1007/s12026-024-09525-1
Qun Feng, Xiaolin Xu, Shoulin Zhang
{"title":"cGAS-STING pathway in systemic lupus erythematosus: biological implications and therapeutic opportunities.","authors":"Qun Feng, Xiaolin Xu, Shoulin Zhang","doi":"10.1007/s12026-024-09525-1","DOIUrl":"10.1007/s12026-024-09525-1","url":null,"abstract":"<p><p>The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has been identified as a significant modulator of inflammation in various clinical contexts, including infection, cellular stress, and tissue injury. The extensive participation of the cGAS-STING pathway can be attributed to its ability to detect and control the cellular reaction to DNAs originating from both microorganisms and hosts. These DNAs are well recognized as molecules linked with potential risks. At physiological levels, the STING signaling system exhibits protective effects. However, prolonged stimulation of this pathway contributes to autoimmune disorder pathogenesis. The present paper provides an overview of the activation mechanism of the cGAS-STING signaling pathways and their associated significant functions, as well as therapeutic interventions in the context of systemic lupus erythematosus (SLE). The primary objective is to enhance our comprehension of SLE and facilitate more effective diagnosis and treatment strategies for this condition.</p>","PeriodicalId":13389,"journal":{"name":"Immunologic Research","volume":" ","pages":"1207-1216"},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MYOCD and SRF-mediated MLCK transcription prevents polymorphonuclear neutrophils from ferroptosis in sepsis-related acute lung injury.","authors":"Danfeng Pan, Qiu Wu, Chunfeng Zhang, Tao Qin, Tian Jiang, Ximei Wu, Fugen Wu","doi":"10.1007/s12026-024-09529-x","DOIUrl":"10.1007/s12026-024-09529-x","url":null,"abstract":"<p><p>Persistent activation of polymorphonuclear neutrophils (PMNs) plays a crucial role in the development of sepsis-related acute lung injury (ALI). This study investigated key molecular mechanisms involved in the hyperactivation of PMNs during ALI. A mouse model of sepsis-related ALI was generated by lipopolysaccharide (LPS) injection. RNA sequencing identified myosin light chain kinase (MLCK) as the most significant differentially expressed gene (DEG) between PMNs isolated from model and control mice. Myocardin (MYOCD) and serum response factor (SRF) were two of the DEGs that could promote transcription of MLCK by binding to its promoter. Either knockdown of MLCK, MYOCD, or SRF ameliorated dysfunction and edema in the lungs of LPS-treated mice. Kyoto Encyclopedia of Genes and Genomes enrichment analysis suggested that the DEGs are enriched in a ferroptosis-related signaling pathway. The MLCK, MYOCD, or SRF knockdown increased contents of ROS, MDA, ferritin, and ferrous iron, and reduced levels of GSH and GPX4 in the PMNs. However, the MLCK overexpression restored ferroptosis resistance and activity of the PMNs, resulting in increased lung injury. Collectively, this study demonstrates that MYOCD and SRF-mediated MLCK upregulation is correlated with ferroptosis resistance and hyperactivation of PMNs in sepsis-related ALI.</p>","PeriodicalId":13389,"journal":{"name":"Immunologic Research","volume":" ","pages":"1299-1312"},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Anti-inflammatory effects of 1,7-dihydroxy-3,4-dimethoxyxanthone through inhibition of M1-phenotype macrophages via arginine/mitochondrial axis.","authors":"Xin Liu, Ting Wang, Ruoxuan Xiang, Huazhan Sun, Mengyan Zhao, Xiaojuan Ye, Yuyun Zhou, Guodong Wang, Yuyan Zhou","doi":"10.1007/s12026-024-09538-w","DOIUrl":"10.1007/s12026-024-09538-w","url":null,"abstract":"<p><p>It is known that 1,7-dihydroxy-3,4-dimethoxyxanthone (XAN), derived from Securidaca inappendiculata Hassk., exhibits anti-inflammatory and analgesic activities and inhibits M1 polarization of macrophages. However, its ability to alleviate inflammation induced by pro-inflammatory cytokines in THP-1 cells and its anti-inflammatory mechanisms remain unclear. THP-1 cells were treated with phorbol 12-myristate-13-acetate to differentiate and divided into three groups. They were stimulated with lipopolysaccharide (LPS) and interferon-γ (IFN-γ). The toxicity of XAN was assessed using Cell Counting Kit-8, and the expression of various genes and proteins was analyzed using real-time quantitative polymerase chain reaction, flow cytometry, and western blotting. Transmission electron microscopy was used to observe changes in mitochondrial structure. XAN at concentrations ≤ 10 µg/mL did not affect THP-1 cell viability and reduced the mRNA expression of pro-inflammatory factors, including interleukin (IL)-1β, inducible nitric oxide synthase (iNOS), NOD-like receptor thermal protein domain protein 3 (NLRP3), and tumor necrosis factor-α (TNF-α). XAN also increased the levels of anti-inflammatory factors, including chemokine ligand 22, mannose receptor (CD206), IL-10, peroxisome proliferator-activated receptor-γ, and transglutaminase 2. Additionally, XAN downregulated the expression of inflammation-related proteins iNOS, NLRP3, and IL-1β; significantly increased the expression of arginase 1, ornithine decarboxylase, and arginine metabolism-related proteins and genes; inhibited mitochondrial damage; and reduced reactive oxygen species (ROS) generation. XAN enhanced the arginine metabolism pathway, prevented mitochondrial damage, reduced ROS levels, and provided an effective defensive response against LPS/IFN-γ-induced inflammation.</p>","PeriodicalId":13389,"journal":{"name":"Immunologic Research","volume":" ","pages":"1404-1416"},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142345936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immunologic ResearchPub Date : 2024-12-01Epub Date: 2024-10-22DOI: 10.1007/s12026-024-09548-8
Xiangfeng Xu, Yao Lu, Rong Shen, Li Fang
{"title":"Phillyrin inhibits oxidative stress and neutrophil extracellular trap formation through the KEAP1/NRF2 pathway in gouty arthritis.","authors":"Xiangfeng Xu, Yao Lu, Rong Shen, Li Fang","doi":"10.1007/s12026-024-09548-8","DOIUrl":"10.1007/s12026-024-09548-8","url":null,"abstract":"<p><p>Gouty arthritis (GA) is an inflammatory disorder characterized by deposition of monosodium urate (MSU) crystal in joints. Phillyrin, a natural compound with anti-inflammatory properties, shows promise in mitigating inflammatory responses. This study investigates the therapeutic potential of phillyrin in GA and explores its mechanisms of action. GA was induced in mice via intraarticular MSU injection, and joint inflammation, inflammatory cell infiltration, and their level in serum/tissue were assessed. Key proteins in the NF-κB and NLRP3 pathways were examined using western blot analysis. The impact of phillyrin on oxidative stress, neutrophil extracellular trap (NET) formation, and neutrophil accumulation was evaluated by measuring CD11b + Ly6G + cells, MPO, CitH3, extracellular DNA ratio, and oxidative stress markers. In vitro studies assessed the effects of phillyrin on oxidative stress, cell viability, cytokine production, and NET formation in MSU-treated neutrophils. The KEAP1/NRF2 pathway's role was analyzed using ML385, an NRF2 inhibitor. Phillyrin significantly reversed MSU-induced ankle swelling and inflammatory cell infiltration in joint tissues. It suppressed pro-inflammatory cytokines and proteins in the NF-κB and NLRP3 pathways. Phillyrin reduced neutrophil infiltration, evidenced by lower MPO activity and NET formation, marked by reduced CitH3 expression. In vitro, phillyrin inhibited inflammatory marker expression and NET formation without affecting cell viability. It also restored antioxidant enzyme levels and reduced ROS production, regulating the KEAP1/NRF2 pathway, enhancing NRF2 expression and stability. These effects were reversed by NRF2 inhibition with ML385. Phillyrin alleviates GA by reducing joint inflammation, inhibiting NET formation, and suppressing oxidative stress through NRF2 modulation.</p>","PeriodicalId":13389,"journal":{"name":"Immunologic Research","volume":" ","pages":"1489-1501"},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142464245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immunologic ResearchPub Date : 2024-12-01Epub Date: 2024-08-06DOI: 10.1007/s12026-024-09527-z
Mehmet Akif Durmuş, Selda Kömeç, Abdurrahman Gülmez
{"title":"Artificial intelligence applications for immunology laboratory: image analysis and classification study of IIF photos.","authors":"Mehmet Akif Durmuş, Selda Kömeç, Abdurrahman Gülmez","doi":"10.1007/s12026-024-09527-z","DOIUrl":"10.1007/s12026-024-09527-z","url":null,"abstract":"<p><p>Artificial intelligence (AI) is increasingly being used in medicine to enhance the speed and accuracy of disease diagnosis and treatment. AI-based image analysis is expected to play a crucial role in future healthcare facilities and laboratories, offering improved precision and cost-effectiveness. As technology advances, the requirement for specialized software knowledge to utilize AI applications is diminishing. Our study will examine the advantages and challenges of employing AI-based image analysis in the field of immunology and will investigate whether physicians without software expertise can use MS Azure Portal for ANA IIF test classification and image analysis. This is the first study to perform Hep-2 image analysis using MS Azure Portal. We will also assess the potential for AI applications to aid physicians in interpreting ANA IIF results in immunology laboratories. The study was designed in four stages by two specialists. Stage 1: creation of an image library, Stage 2: finding an artificial intelligence application, Stage 3: uploading images and training artificial intelligence, Stage 4: performance analysis of the artificial intelligence application. In the first training, the average pattern identification accuracy for 72 testing images was 81.94%. After the second training, this accuracy increased to 87.5%. Patterns Precision improved from 71.42 to 79.96% after the second training. As a result, the number of correctly identified patterns and their accuracy increased with the second training process. Artificial intelligence-based image analysis shows promising potential. This technology is expected to become essential in healthcare facility laboratories, offering higher accuracy rates and lower costs.</p>","PeriodicalId":13389,"journal":{"name":"Immunologic Research","volume":" ","pages":"1277-1287"},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immunologic ResearchPub Date : 2024-12-01Epub Date: 2024-08-13DOI: 10.1007/s12026-024-09526-0
Xinting Li, Bin Lu, Xiaoli Luo
{"title":"New mutations and new phenotypes: a case of Major Histocompatibility Complex Class II Deficiency.","authors":"Xinting Li, Bin Lu, Xiaoli Luo","doi":"10.1007/s12026-024-09526-0","DOIUrl":"10.1007/s12026-024-09526-0","url":null,"abstract":"<p><p>Major Histocompatibility Complex Class II Deficiency is a rare primary immunodeficiency disease with autosomal recessive inheritance. It is characterized by the absence of Major Histocompatibility Complex Class II molecules on the surface of immune cells. In this article, we will present a four-month-old baby girl who presented with recurrent fever and progressive exacerbation of respiratory symptoms since a month ago. Relevant examinations suggested pancytopenia, a decrease in CD4 and CD3 ratio, and CD4/CD8 inversion, hypogammaglobulinemia, and diagnosis of hemophagocytic syndrome during treatment which all led to the consideration of the presence of immunodeficiency diseases, and the diagnosis of Major Histocompatibility Complex Class II Deficiency was made by peripheral blood whole-exon sequencing (WES). This case is remarkable in that it reveals features of hemophagocytic syndrome in a Major Histocompatibility Complex Class II Deficiency infant, most probably caused by cytomegalovirus, which rarely reported before, and the Major Histocompatibility Complex Class II Deficiency caused by a novel mutation site in the RFXANK gene which never reported, and it also describes the diagnostic and therapeutic course in detail. In addition, we have summarized the information related to Major Histocompatibility Complex Class II Deficiency triggered by mutations in the RFXANK gene to assist clinicians in early recognition and diagnosis.</p>","PeriodicalId":13389,"journal":{"name":"Immunologic Research","volume":" ","pages":"1268-1276"},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618159/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immunologic ResearchPub Date : 2024-12-01Epub Date: 2024-07-31DOI: 10.1007/s12026-024-09524-2
Hanna Danielewicz, Artur Gurgul, Anna Dębińska, Anna Drabik-Chamerska, Lidia Hirnle, Andrzej Boznański
{"title":"Cord blood methylation at TNFRSF17 is associated with early allergic phenotypes.","authors":"Hanna Danielewicz, Artur Gurgul, Anna Dębińska, Anna Drabik-Chamerska, Lidia Hirnle, Andrzej Boznański","doi":"10.1007/s12026-024-09524-2","DOIUrl":"10.1007/s12026-024-09524-2","url":null,"abstract":"<p><p>Food allergy and eczema are the earliest allergic phenotypes in childhood. These diseases could be related to either IgE-mediated or non-IgE-mediated reactions to the allergen. TNFRSF17 is a key molecule in B cell maturation and is important in both types of responses.We conducted a study comparing the relative expression and the methylation status at the TNFRSF17 in regard to the child's early atopic sensitisation and allergic phenotypes.In the recruited population of 200 women and 174 children with available clinical data (physical examination by allergist and antigen-specific IgE measurements), 78 cord blood samples were included in the gene expression analysis (relative gene expression with GAPDH as reference by RT-PCR) and 96 samples with microarray DNA methylation data (whole genome methylation profile Infinium MethylationEPIC).The altered TNFRSF17 methylation pattern in the cord blood at both single cg04453550 and mean methylation at upstream of TNFRSF17 was observed in children who developed food allergy and/or eczema in early childhood. The change in methylation profile was mirrored by the relative expression. The profile of IgE sensitisation to food and/or inhalant allergens was not significantly associated with either methylation or expression of TNFRSF17.In conclusion, methylation at the upstream sites at TNFRSF17 in the cord blood at birth is associated with food allergy and eczema early in childhood.</p>","PeriodicalId":13389,"journal":{"name":"Immunologic Research","volume":" ","pages":"1259-1267"},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618142/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141859593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immunologic ResearchPub Date : 2024-12-01Epub Date: 2024-09-04DOI: 10.1007/s12026-024-09535-z
Giada De Benedittis, Andrea Latini, Chiara Morgante, Carlo Perricone, Fulvia Ceccarelli, Giuseppe Novelli, Lucia Novelli, Cinzia Ciccacci, Paola Borgiani
{"title":"The dysregulation of mitochondrial homeostasis-related genes could be involved in the decrease of mtDNA copy number in systemic lupus erythematosus patients.","authors":"Giada De Benedittis, Andrea Latini, Chiara Morgante, Carlo Perricone, Fulvia Ceccarelli, Giuseppe Novelli, Lucia Novelli, Cinzia Ciccacci, Paola Borgiani","doi":"10.1007/s12026-024-09535-z","DOIUrl":"10.1007/s12026-024-09535-z","url":null,"abstract":"<p><p>Systemic lupus erythematosus (SLE) is a chronic multifactorial autoimmune disease. It is now widely demonstrated that oxidative stress (OS) plays an important role in the modulation of the pathogenesis of this disease. Mitochondrial DNA (mtDNA) is highly vulnerable to OS and it is known a decrease of mtDNA copy number in SLE patients. However, to date, it has not been investigated if this decrease is associated with a dysregulation of mitochondrial homeostasis genes. Our aim is to evaluate the amount of mtDNA copy number and the expression of the genes more involved in the mitochondrial homeostasis pathways, in peripheral blood mononuclear cells (PBMCs) of SLE patients and healthy controls. We analysed the amount of mtDNA in PBMCs of 72 SLE patients and 61 healthy controls by qPCR. Then, we investigated the expression variability of TFAM and SIRT1 (biogenesis), MFN1 and MFF (fusion/fission) and PRKN2 (mitophagy) genes in a subgroup of SLE patients and healthy controls. Interestingly, we have observed a highly significant decrease in mtDNA copies in SLE patients compared to healthy controls (P < 0.0001). In addition, we have shown that the expression levels of SIRT1, MFN1 and PRKN2 genes were significantly decreased in SLE patients with respect to healthy controls (P = 0.00001 for SIRT1, P = 0.0150 for MFN1 and P = 0.0009 for PRKN2). Lastly, we have reported a positive correlation between PRKN2 expression level and mtDNA copy number (P = 0.019, r = 0.475). In conclusion, our data confirm the impairment of mtDNA copy number in the disease and show for the first time a dysregulation of the mitochondrial homeostasis genes. These results could provide additional support to the important role of mitochondria in SLE development.</p>","PeriodicalId":13389,"journal":{"name":"Immunologic Research","volume":" ","pages":"1384-1392"},"PeriodicalIF":3.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618193/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142125629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}