{"title":"A Miniaturized MgO Multi-Sensor Device Based on A Flexible Printed Circuit Board for Glucose and pH Detection.","authors":"Po-Hui Yang, Jyun-Ming Huang, Jung-Chuan Chou, Chih-Hsien Lai, Po-Yu Kuo, Yu-Hsun Nien, Wei-Shun Chen, Ming-Tai Hsu, Chi-Han Liao","doi":"10.1109/TNB.2025.3536456","DOIUrl":"https://doi.org/10.1109/TNB.2025.3536456","url":null,"abstract":"<p><p>This study proposed a miniaturized multi-sensor device prepared using a flexible printed circuit board (FPCB) and applied to detect glucose (Glu) and pH value, where both the readout circuit board and the sensors possess flexible characteristics. Additionally, this work implemented the potentiometric readout circuit. It integrated the die onto the readout circuit board using wire bonding techniques, while the area of the readout circuit board is 5.5 cm × 4.0 cm. The readout circuit board is equipped with a power supply, a readout circuit chip, and a multi-sensor. It is worth mentioning that this study designs the multi-sensor in a double-sided manner. The advantage of this design lies in the fact that both sides of the sensor can be utilized as a working electrode or reference electrode, providing convenience to users during measurement analysis. In addition, the magnesium oxide (MgO) multi-sensor is interconnected with the readout circuit board using slot type. This means the MgO multi-sensor can also be used as a disposable sensor. In this study, the multi-sensor system can measure hydrogen ions and Glu at the same time. The sensitivity of the two is 25.27 mV/pH and 16.78 mV/mM, respectively, and the linearity can reach 99.9 %.</p>","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"PP ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143541727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adsorption of Brilliant Green Dye by Iron Oxide Nanoparticles Synthesized From the Leaf Extracts of Acacia jacquemontii","authors":"Nisha Choudhary;Bhakti Patel;Reema Desai;Vinars Dawane;Kuldeep Luhana;Suhas Vyas;Titus Chinedu Egbosiuba;Dipak Kumar Sahoo;Virendra Kumar Yadav;Ashish Patel","doi":"10.1109/TNB.2025.3528131","DOIUrl":"10.1109/TNB.2025.3528131","url":null,"abstract":"Phyto-mediated synthesis can be used for the sustainable fabrication of metallic nanoparticles (NPs). Ethanolic leaf extract of Acacia jacquemontii was used to phyto-fabricate iron oxide nanoparticles (FeO NPs). Synthesized FeO NPs were examined by various analytical techniques for their detailed chemical elemental and morphological features. High-performance thin-layer chromatography (HPTLC) was used for the analysis of the ethanolic extracts of the leaves, which ensured the presence of phenols and terpenoids in the extract. FeO NPs show a peak between 350-400nm when analyzed by UV-Vis spectroscopy, and the typical bands were found in the range of 745 cm−1 for Fe-O and 1595 cm−1, 3177 cm−1 for some other organic molecules by Fourier transform-infrared (FTIR). The spherical shape of FeO NPs was investigated with the help of a Field emission scanning electron microscope (FESEM) analysis which exhibited the size varied from 13.35 to 31.29 nm. Electron diffraction spectroscopy (EDS) confirmed the Fe, O, and C peaks, along with N, Cl, S, and K traces. The adsorption capacity of the FeO NPs for brilliant green (BG) dye was evaluated at different pH, dosages of adsorbent, and contact time. The highest adsorption parentage of 57.2% for 10 ppm BG dye was observed at 9 pH and 10 mg doses of FeO NPs. The highest absorption capacity of FeO NPs is 60 mg/g. The recyclability potential of the FeO NPs continuously decreased with the repletion of the cycle from first to fourth whose value reached 19.33% after the fourth cycle. Such phytofabricated FeO NPs and their application in the removal of organic could prove to be eco-friendly and economical.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"24 2","pages":"234-248"},"PeriodicalIF":3.7,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143541749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Robin Requadt, Manuel Fink, Patrick Kubica, Claudia Steinem, Axel Munk, Housen Li
{"title":"Robust inference of cooperative behaviour of multiple ion channels in voltage-clamp recordings.","authors":"Robin Requadt, Manuel Fink, Patrick Kubica, Claudia Steinem, Axel Munk, Housen Li","doi":"10.1109/TNB.2025.3532441","DOIUrl":"https://doi.org/10.1109/TNB.2025.3532441","url":null,"abstract":"<p><p>Recent experimental studies have shed light on the intriguing possibility that ion channels exhibit cooperative behaviour. However, a comprehensive understanding of such cooperativity remains elusive, primarily due to limitations in measuring separately the response of each channel. Rather, only the superimposed channel response can be observed, challenging existing data analysis methods. To address this gap, we propose IDC (Idealisation, Discretisation, and Cooperativity inference), a robust statistical data analysis methodology that requires only voltage-clamp current recordings of an ensemble of ion channels. The framework of IDC enables us to integrate recent advancements in idealisation techniques and coupled Markov models. Further, in the cooperativity inference phase of IDC, we introduce a minimum distance estimator and establish its statistical guarantee in the form of asymptotic consistency. We demonstrate the effectiveness and robustness of IDC through extensive simulation studies. As an application, we investigate gramicidin D channels. Our findings reveal that these channels act independently, even at varying applied voltages during voltage-clamp experiments. An implementation of IDC is available from GitLab.</p>","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"PP ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143541779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhenlu Liu, Ben Cao, Qi Shao, Yanfen Zheng, Bin Wang, Shihua Zhou, Pan Zheng
{"title":"Family of Mutually Uncorrelated Codes for DNA Storage Address Design.","authors":"Zhenlu Liu, Ben Cao, Qi Shao, Yanfen Zheng, Bin Wang, Shihua Zhou, Pan Zheng","doi":"10.1109/TNB.2025.3530470","DOIUrl":"https://doi.org/10.1109/TNB.2025.3530470","url":null,"abstract":"<p><p>Deoxyribonucleic acid (DNA) has become an ideal medium for long-term storage and retrieval due to its extremely high storage density and long-term stability. But access efficiency is an existing bottleneck in DNA storage, especially the lack of high-quality random access address sequences. Therefore, in this paper, we report a series of approaches based on k-weakly mutually uncorrelated (k-WMU) codes to design the address sequence to improve the access efficiency of DNA storage. To address the problem of DNA sequences that are poorly scalable at the base level, we propose a 0-m-ruling coding scheme combined with k-WMU codes that can make address sequences avoid generating secondary structure with stem lengths ranging from 3 to 9. Based on the decoupled structure, We further extend the k-WMU codes with error correction function while satisfying combinatorial biological constraints. In order to investigate the performance of the designed address sequences for real-world applications, we perform simulation experiments based on thermodynamic properties and error correction capability as well as compared the minimum free energy (MFE), melting temperature (TM), and average decoding success rate (ADSR) with previous work. The results show that designed address sequences have a high MFE value and ADSR and a substantial reduction in TM-variance while satisfying the combinatorial biological constraints. As the quality of address sequences improves, this will help to achieve accurate random access as well as enhance the robustness of the DNA storage system.</p>","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"PP ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143541762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhen Cheng;Zhichao Zhang;Heng Liu;Dongliang Jing;Weihua Gong;Kaikai Chi
{"title":"Neural Network With Attention Mechanism for Abnormality Detection and Localization in Diffusive Molecular Communication","authors":"Zhen Cheng;Zhichao Zhang;Heng Liu;Dongliang Jing;Weihua Gong;Kaikai Chi","doi":"10.1109/TNB.2025.3527520","DOIUrl":"10.1109/TNB.2025.3527520","url":null,"abstract":"Diffusive molecular communication (DMC) is an emerging paradigm in nanotechnology, which provides biocompatibility and nanoscale communication for many promising applications, such as targeted drug delivery, environmental monitoring, etc. However, detecting and localizing abnormalities in most of these applications is challenging, such as identifying tumor cells within the body or detecting pollution in air or water. In this paper, we introduce a method for detecting and localizing abnormalities in three dimensional DMC system with multiple sensors, receivers and one fusion center by adopting Transformer-based model with attention mechanism. We make full use of the attention mechanism to capture the inter-symbol interference (ISI) to improve the accuracy of detection and localization. In addition, we simplify the model structure to significantly reduce the complexity of this model. Furthermore, two strategies that different types of molecules (DMT) and same type of molecules (SMT) are released by sensors are considered. The training dataset and testing dataset are generated under these two strategies. Simulation results show that the information about the abnormality detection and localization can be obtained at the same time based on the Transformer-based model under DMT and SMT. Especially, our model outperforms the Informer-based model, deep neural networks (DNN)-based model and log-likelihood ratio (LLR) method.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"24 2","pages":"257-267"},"PeriodicalIF":3.7,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143541773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oindrila Banik;Bansod Sneha Bharat;Anju R. Babu;Prasoon Kumar;Santosh Kumar;Earu Banoth
{"title":"Recycling Eggshell Waste Into Calcium Oxide Nanoparticles: A Sustainable Approach for Nanomaterial Synthesis and Potential Applications","authors":"Oindrila Banik;Bansod Sneha Bharat;Anju R. Babu;Prasoon Kumar;Santosh Kumar;Earu Banoth","doi":"10.1109/TNB.2025.3526975","DOIUrl":"10.1109/TNB.2025.3526975","url":null,"abstract":"Eggshell (ES) wastes have been ranked as the <inline-formula> <tex-math>$15^{text {th}}$ </tex-math></inline-formula> food industry pollution due to the ever-increasing regular consumption of primary dietary products, eggs. Management and treatment of tons of discarded eggshells produced daily on a global scale are realized to be a predicament, and an immediate solution must be advocated to address the pollution. This sets a tone for the recyclability of this biowaste in a myriad of fields, like nanotechnology, biomedical, and environmental pollution control. Calcium carbonate in the shells makes it a safe precursor for producing calcium oxide as a nanomaterial by the top-down approach – calcination. This paper highlights a facile way to procure waste eggshell-derived metal oxide nanoparticles with reproducibility and recyclability. Calcium Oxide Nanoparticles (CaO NPs) obtained at two different calcination temperatures for optimization and this was characterized by SEM, FTIR, XRD, DLS, and Zeta Potential analyzer. CaONPs are less-studied metal oxide nanoparticles but hold promising applications in different fields. Hence, there is a scope for further investigation on the non-toxic, non-hazardous CaO NPs obtained facilely – an effort to minimize and regulate food wastes.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"24 2","pages":"249-256"},"PeriodicalIF":3.7,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143541777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Transactions on NanoBioscience Information for Authors","authors":"","doi":"10.1109/TNB.2024.3514239","DOIUrl":"https://doi.org/10.1109/TNB.2024.3514239","url":null,"abstract":"","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"24 1","pages":"C3-C3"},"PeriodicalIF":3.7,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10820093","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ZebraVas: A Non-Invasive Microvision System for Vascular Recognition and Blood Flow Monitoring of Zebrafish Larvae","authors":"Zhongyi Guo;Nana Ai;Wei Ge;Qingsong Xu","doi":"10.1109/TNB.2024.3520137","DOIUrl":"10.1109/TNB.2024.3520137","url":null,"abstract":"Zebrafish have emerged as a powerful model organism in cardiovascular disease research. Accurately identifying zebrafish blood vessels and evaluating blood flow velocity without injury has a wide range of biological applications. This paper presents the design and development of a non-invasive microvision system for vascular recognition and blood flow monitoring of zebrafish larvae. For the first time, a visual algorithm based on color thresholding and discrete Fourier transform filtering is proposed to determine the position of zebrafish dorsal cardinal vein vessels. Next, the blood flow velocity is determined based on the change rate of pixel values near the centroid point of the blood vessel recognition results. Then, an independent software system is developed based on the producer-consumer underlying framework. A user-friendly interface is specifically designed for biomedical workers, and a complete prototype system is built in combination with hardware devices. In addition, relevant experiments were conducted, and the results indicated that the system can effectively recognize the position of vessels and monitor blood flow velocity in zebrafish larvae under different anesthesia concentrations and developmental days. The heart rate information obtained based on blood flow velocity is consistent with the heart beating frequency. Moreover, the system has also been successfully applied to blood flow velocity monitoring under fluorescence conditions. In future work, this system will be applied in drug screening research for cardiovascular-related diseases of zebrafish larvae.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"24 2","pages":"225-233"},"PeriodicalIF":3.7,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143541726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microtubule Deformation Modulates Intracellular Transport by Kinesin Differently Than Dynein","authors":"Syeda Rubaiya Nasrin;Tanjina Afrin;Arif Md. Rashedul Kabir;Daisuke Inoue;Takefumi Yamashita;Makoto Oura;Johtaro Yamamoto;Masataka Kinjo;Kazuki Sada;Akira Kakugo","doi":"10.1109/TNB.2024.3507021","DOIUrl":"10.1109/TNB.2024.3507021","url":null,"abstract":"Mechanical stress on cells is transmitted through many biological processes, for example, cell shape control, tissue patterning, and axonal homeostasis. Microtubules, a cytoskeletal component, presumably play a significant role in the mechanoregulation of cellular processes. We investigate motor protein-driven transport of quantum dots along mechanically deformed microtubules. We found that microtubule deformation significantly slowed kinesin-driven transport, whereas we previously reported dynein-driven transport was rather robust. Such dualistic modulation of transportation dynamics of the motor proteins by microtubule deformation can be attributed to the altered affinity of the motor proteins for buckled microtubules. Our results may form the basis for understanding microtubules’ role in regulating cellular processes in a mechanically adverse environment through its detection ability and response to mechanical stress.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"24 2","pages":"218-224"},"PeriodicalIF":3.7,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143604646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}