Hansa Gul, Haris Ahmed Khan, Zahida Nasreen, Nasir Assad, Syed Ali Turab, Muhammad Hanif
{"title":"Exploring the Antibacterial, Anticoagulant, and Hemolytic Potential of Green-Synthesized Fe<sub>2</sub>O<sub>3</sub> Nanoparticles by Cucurbita pepo pulp.","authors":"Hansa Gul, Haris Ahmed Khan, Zahida Nasreen, Nasir Assad, Syed Ali Turab, Muhammad Hanif","doi":"10.1109/TNB.2025.3563307","DOIUrl":null,"url":null,"abstract":"<p><p>Iron oxide nanoparticles (Fe<sub>2</sub>O<sub>3</sub> NPs) were successfully Synthesized in a green manner using Cucurbita pepo pulp extract as a natural capping and reducing agent. UV-vis spectroscopy verified the synthesis with a distinct absorption peak at 285 nm, while FTIR analysis revealed functional groups responsible for reduction and stabilization. X-ray diffraction (XRD) analysis confirmed the crystalline nature of the nanoparticles, with an average size of 21.5 nm. SEM and EDX analyses further validated the nanoparticles' spherical morphology and elemental composition. Biosynthesized IONPs exhibited notable antibacterial activity against multidrug-resistant bacterial strains such as Klebsiella pneumoniae and Pseudomonas aeruginosa. The inhibition zones ranged between 5-22 mm for Klebsiella pneumoniae and from 4 to 12 mm for Pseudomonas aeruginosa, depending on the concentration of the nanoparticles. Hematological evaluations demonstrated strong anticoagulant and thrombolytic properties. Iron oxide nanoparticles effectively inhibited blood coagulation at 40 μg/mL and showed significant thrombolytic activity by dissolving preformed clots at 50 μg/mL. The biosynthesized IONPs showed remarkable antioxidant activity that was comparable to standard. This study underscores the potential of Cucurbita pepo as a sustainable and eco-friendly resource for synthesizing multifunctional IONPs. The results suggest promising applications to address antibiotic resistance and manage blood-related disorders. Furthermore, the findings highlight the critical role of green nanotechnology in the advancement of environmentally sustainable and biocompatible nanomaterials for diverse biomedical applications.</p>","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"PP ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on NanoBioscience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1109/TNB.2025.3563307","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Iron oxide nanoparticles (Fe2O3 NPs) were successfully Synthesized in a green manner using Cucurbita pepo pulp extract as a natural capping and reducing agent. UV-vis spectroscopy verified the synthesis with a distinct absorption peak at 285 nm, while FTIR analysis revealed functional groups responsible for reduction and stabilization. X-ray diffraction (XRD) analysis confirmed the crystalline nature of the nanoparticles, with an average size of 21.5 nm. SEM and EDX analyses further validated the nanoparticles' spherical morphology and elemental composition. Biosynthesized IONPs exhibited notable antibacterial activity against multidrug-resistant bacterial strains such as Klebsiella pneumoniae and Pseudomonas aeruginosa. The inhibition zones ranged between 5-22 mm for Klebsiella pneumoniae and from 4 to 12 mm for Pseudomonas aeruginosa, depending on the concentration of the nanoparticles. Hematological evaluations demonstrated strong anticoagulant and thrombolytic properties. Iron oxide nanoparticles effectively inhibited blood coagulation at 40 μg/mL and showed significant thrombolytic activity by dissolving preformed clots at 50 μg/mL. The biosynthesized IONPs showed remarkable antioxidant activity that was comparable to standard. This study underscores the potential of Cucurbita pepo as a sustainable and eco-friendly resource for synthesizing multifunctional IONPs. The results suggest promising applications to address antibiotic resistance and manage blood-related disorders. Furthermore, the findings highlight the critical role of green nanotechnology in the advancement of environmentally sustainable and biocompatible nanomaterials for diverse biomedical applications.
期刊介绍:
The IEEE Transactions on NanoBioscience reports on original, innovative and interdisciplinary work on all aspects of molecular systems, cellular systems, and tissues (including molecular electronics). Topics covered in the journal focus on a broad spectrum of aspects, both on foundations and on applications. Specifically, methods and techniques, experimental aspects, design and implementation, instrumentation and laboratory equipment, clinical aspects, hardware and software data acquisition and analysis and computer based modelling are covered (based on traditional or high performance computing - parallel computers or computer networks).