IEEE Transactions on NanoBioscience最新文献

筛选
英文 中文
Electrospun Stannic Oxide Nanofiber Thin-Film Based Sensing Device for Monitoring Functional Behaviours of Adherent Mammalian Cells. 基于电纺氧化锡纳米纤维薄膜的传感设备,用于监测粘附的哺乳动物细胞的功能行为。
IF 3.7 4区 生物学
IEEE Transactions on NanoBioscience Pub Date : 2024-11-04 DOI: 10.1109/TNB.2024.3489353
Uvanesh Kasiviswanathan, Chandan Kumar, Ajay Kumar Sahi, Amit Kumar, Satyabrata Jit, Neeraj Sharma, Sanjeev Kumar Mahto
{"title":"Electrospun Stannic Oxide Nanofiber Thin-Film Based Sensing Device for Monitoring Functional Behaviours of Adherent Mammalian Cells.","authors":"Uvanesh Kasiviswanathan, Chandan Kumar, Ajay Kumar Sahi, Amit Kumar, Satyabrata Jit, Neeraj Sharma, Sanjeev Kumar Mahto","doi":"10.1109/TNB.2024.3489353","DOIUrl":"https://doi.org/10.1109/TNB.2024.3489353","url":null,"abstract":"<p><p>This study presents a biosensor utilizing electrospun SnO<sub>2</sub> nanofiber films for real-time monitoring of C2C12 cells. The biosensor demonstrates sensitivity towards cellular behaviours, including adhesion, proliferation, and detachment. Alterations in semi-circle and dielectric properties are validated through Nyquist plot and an EEC model, highlighting the biosensor's potential for analyzing cellular dynamics.</p>","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"PP ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
"Galaxy" encoding: toward high storage density and low cost. "银河 "编码:实现高存储密度和低成本。
IF 3.7 4区 生物学
IEEE Transactions on NanoBioscience Pub Date : 2024-10-28 DOI: 10.1109/TNB.2024.3481504
Xuncai Zhang, Yunfei Lu
{"title":"\"Galaxy\" encoding: toward high storage density and low cost.","authors":"Xuncai Zhang, Yunfei Lu","doi":"10.1109/TNB.2024.3481504","DOIUrl":"https://doi.org/10.1109/TNB.2024.3481504","url":null,"abstract":"<p><p>DNA is considered one of the most attractive storage media because of its excellent reliability and durability. Early encoding schemes lacked flexibility and scalability. To address these limitations, we propose a combination of static mapping and dynamic encoding, named \"Galaxy\" encoding. This scheme uses both the \"dual-rule interleaving\" algorithm and the \"twelve-element Huffman rotational encoding\" algorithm. We tested it with \"Shakespeare Sonnets\" and other files, achieving an encoding information density of approximately 2.563 bits/nt. Additionally, the inclusion of Reed-Solomon error-correcting codes can correct nearly 5% of the errors. Our simulations show that it supports various file types (.gz, .tar, .exe, etc.). We also analyzed the cost and fault tolerance of \"Galaxy\" encoding, demonstrating its high coding efficiency and ability to fully recover original information while effectively reducing the costs of DNA synthesis and sequencing.</p>","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"PP ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2024 Index IEEE Transactions on NanoBioscience Vol. 23 2024 Index IEEE Transactions on NanoBioscience Vol.
IF 3.7 4区 生物学
IEEE Transactions on NanoBioscience Pub Date : 2024-10-23 DOI: 10.1109/TNB.2024.3483609
{"title":"2024 Index IEEE Transactions on NanoBioscience Vol. 23","authors":"","doi":"10.1109/TNB.2024.3483609","DOIUrl":"https://doi.org/10.1109/TNB.2024.3483609","url":null,"abstract":"","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 4","pages":"1-14"},"PeriodicalIF":3.7,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10731932","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on NanoBioscience Publication Information 电气和电子工程师学会《纳米生物科学论文集》出版信息
IF 3.7 4区 生物学
IEEE Transactions on NanoBioscience Pub Date : 2024-10-15 DOI: 10.1109/TNB.2024.3460099
{"title":"IEEE Transactions on NanoBioscience Publication Information","authors":"","doi":"10.1109/TNB.2024.3460099","DOIUrl":"https://doi.org/10.1109/TNB.2024.3460099","url":null,"abstract":"","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 4","pages":"C2-C2"},"PeriodicalIF":3.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10718717","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guest Editorial Special Section on Biomedical and Health Informatics 生物医学与健康信息学》特邀编辑专栏
IF 3.7 4区 生物学
IEEE Transactions on NanoBioscience Pub Date : 2024-10-15 DOI: 10.1109/TNB.2024.3460448
Xiaohua Hu
{"title":"Guest Editorial Special Section on Biomedical and Health Informatics","authors":"Xiaohua Hu","doi":"10.1109/TNB.2024.3460448","DOIUrl":"https://doi.org/10.1109/TNB.2024.3460448","url":null,"abstract":"","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 4","pages":"538-539"},"PeriodicalIF":3.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10718701","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Errata to “Benchmarking Power Generation From Multiple Wastewater Electrolytes in Microbial Fuel Cells With 3D Printed Disk-Electrodes” 利用 3D 打印磁盘电极在微生物燃料电池中利用多种废水电解质发电的基准测试 "勘误表
IF 3.7 4区 生物学
IEEE Transactions on NanoBioscience Pub Date : 2024-10-15 DOI: 10.1109/TNB.2024.3443498
Yuvraj Maphrio Mao;Khairunnisa Amreen;Sanket Goel
{"title":"Errata to “Benchmarking Power Generation From Multiple Wastewater Electrolytes in Microbial Fuel Cells With 3D Printed Disk-Electrodes”","authors":"Yuvraj Maphrio Mao;Khairunnisa Amreen;Sanket Goel","doi":"10.1109/TNB.2024.3443498","DOIUrl":"https://doi.org/10.1109/TNB.2024.3443498","url":null,"abstract":"Presents corrections to the paper, Benchmarking Power Generation From 2 Multiple Wastewater Electrolytes in Microbial 3 Fuel Cells With 3D Printed Disk-Electrodes.","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 4","pages":"612-613"},"PeriodicalIF":3.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10718702","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on NanoBioscience Information for Authors 电气和电子工程师学会《纳米生物科学学报》为作者提供的信息
IF 3.7 4区 生物学
IEEE Transactions on NanoBioscience Pub Date : 2024-10-15 DOI: 10.1109/TNB.2024.3460103
{"title":"IEEE Transactions on NanoBioscience Information for Authors","authors":"","doi":"10.1109/TNB.2024.3460103","DOIUrl":"https://doi.org/10.1109/TNB.2024.3460103","url":null,"abstract":"","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"23 4","pages":"C3-C3"},"PeriodicalIF":3.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10718718","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FePt/MnO2@PEG Nanoparticles as Multifunctional Radiosensitizers for Enhancing Ferroptosis and Alleviating Hypoxia in Osteosarcoma Therapy. 作为多功能放射增敏剂的FePt/MnO2@PEG纳米颗粒可在骨肉瘤治疗中增强铁素体生成和缓解缺氧。
IF 3.7 4区 生物学
IEEE Transactions on NanoBioscience Pub Date : 2024-10-11 DOI: 10.1109/TNB.2024.3475051
Zhipeng Han, Yiyan Wang, Xiaofang Zang, Hong Liu, Jiqing Su, Yong Zhou
{"title":"FePt/MnO<sub>2</sub>@PEG Nanoparticles as Multifunctional Radiosensitizers for Enhancing Ferroptosis and Alleviating Hypoxia in Osteosarcoma Therapy.","authors":"Zhipeng Han, Yiyan Wang, Xiaofang Zang, Hong Liu, Jiqing Su, Yong Zhou","doi":"10.1109/TNB.2024.3475051","DOIUrl":"10.1109/TNB.2024.3475051","url":null,"abstract":"<p><p>Radiotherapy (RT) is a widely used cancer treatment, and the use of metal-based nanoradiotherapy sensitizers has demonstrated promise in enhancing its efficacy. However, achieving effective accumulation of these sensitizers within tumors and overcoming resistance induced by the hypoxic tumor microenvironment remain challenging issues. In this study, we developed FePt/MnO<sub>2</sub>@PEG nanoparticles with multiple radiosensitizing mechanisms, including high-atomic-number element-mediated radiation capture, catalase-mimicking oxygenation, and GSH depletion-induced ferroptosis. Both in vitro and in vivo experiments were conducted to validate the radiosensitizing mechanisms and therapeutic efficacy of FePt/MnO<sub>2</sub>@PEG. In conclusion, this study presents a novel and clinically relevant strategy and establishes a safe and effective combination radiotherapy approach for cancer treatment. These findings hold significant potential for improving radiotherapy outcomes and advancing the field of nanomedicine in cancer therapy.</p>","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"PP ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of nanocarrier additives on biomechanical response of a rat skin. 纳米载体添加剂对大鼠皮肤生物力学反应的影响
IF 3.7 4区 生物学
IEEE Transactions on NanoBioscience Pub Date : 2024-10-04 DOI: 10.1109/TNB.2024.3471588
Diplesh Gautam, Yashika Tomar, Pradeep Shukla, Vamshi Krishna Rapalli, Venkatesh Kp Rao, Gautam Singhvi
{"title":"Influence of nanocarrier additives on biomechanical response of a rat skin.","authors":"Diplesh Gautam, Yashika Tomar, Pradeep Shukla, Vamshi Krishna Rapalli, Venkatesh Kp Rao, Gautam Singhvi","doi":"10.1109/TNB.2024.3471588","DOIUrl":"10.1109/TNB.2024.3471588","url":null,"abstract":"<p><p>Skin health monitoring focuses on identifying diseases through the assessment of the mechanical properties of the skin. These properties may degrade with time, which can alter the skin's natural frequencies and the form of the modes associated with those frequencies. Exploring the skin's mechanical properties can enhance our understanding of its dynamics, improving clinical trials and diagnostics. In this work, the dynamics of the skin were measured using a laser-based non-invasive optical sensor experiment. We measured the skin's mechanical properties over time by analyzing its resonant frequencies and mode shapes. A nanocarrier gel and ketoconazole cream were topically applied to keep the skin hydrated and facilitate deeper penetration of the additives in the skin. Time-based research was used to assess the effect of different formulations on skin elasticity. Experimental results for the modulus of elasticity were compared with those obtained using Finite Element Analysis (FEA) simulations. We observed a reduction in frequencies of cream and gel-treated skin by 29.98% and 44.029% respectively compared to normal skin (frequency: 263.3 ± 1.18 Hz and Modulus of elasticity: 7.56 ± 2.60 MPa). A decrease in stiffness (function of frequency) attributed to increased water content, was observed in cream- and nanocarrier gel-treated skin compared to normal skin. Experimental and numerical results are found to be consistent with one another. This optical sensor-based approach has the potential for studying diseased skin mechanics and its response to gel and cream treatments, aiming to reduce skin disorder morbidity and severity.</p>","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"PP ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Gold Nanoparticles Intraperitoneal Injection on Mice's Erythrocytes and Renal Tissue. 金纳米粒子腹腔注射对小鼠红细胞和肾组织的影响
IF 3.7 4区 生物学
IEEE Transactions on NanoBioscience Pub Date : 2024-10-03 DOI: 10.1109/TNB.2024.3471813
Hassan A Almarshad, Abozer Elderdery, Fawaz O Alenazy, Shawgi A Elissidig
{"title":"Impact of Gold Nanoparticles Intraperitoneal Injection on Mice's Erythrocytes and Renal Tissue.","authors":"Hassan A Almarshad, Abozer Elderdery, Fawaz O Alenazy, Shawgi A Elissidig","doi":"10.1109/TNB.2024.3471813","DOIUrl":"https://doi.org/10.1109/TNB.2024.3471813","url":null,"abstract":"<p><p>The purpose of this study was to investigate the effects of two different types of gold nanoparticles (AuNPs) delivered by intraperitoneal (IP) injection on blood and kidney tissue changes in a mouse model. Three groups of fifteen adult male BALB/c healthy mice, weighing approximately 25-30 g, were used for the experiment and designated G1, G2, and G3, respectively. G1 mice received vehicle, whereas G2 and G3 received an IP injection of 10 mg/kg body weight of methoxy poly ethylene glycol gold nanoparticles (PEG-AuNPs) and fluorescently dye labeled gold nanoparticles (Dye-AuNPs), respectively. Hematological parameters were measured based on the standard complete blood cell count (CBC) technique. The two nanoparticles, i.e., PEG-AuNPs and Dye-AuNPs, significantly reduced most red blood cell (RBC) parameters in the groups with the exception of a nonsignificant effect on hemoglobin (HBG) levels. Both gold nanoparticles, i.e., PEG-AuNPs and Dye-AuNPs, led to a reduced RBC count, mean corpuscular volume (MCV), and mean corpuscular hemoglobin (MCH) level when compared with the control. Notably, Dye-AuNPs and PEG-AuNPs resulted in a considerably higher RBC distribution RDW-(CV % and SD fL). Glomerular injury was suggested based on the development of hydropic degeneration and the presence of a protein-rich fluid inside the tubules. Renal tissue and blood indices changed significantly in response to the two nanoparticles, suggesting possible organ injury.</p>","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"PP ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信