Silence-Based Multi-Type Hybrid Transmission Scheme for Mobile Molecular Communication System.

IF 4.4 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Nihit Bhatnagar, Aneerban Roy, Sandeep Joshi
{"title":"Silence-Based Multi-Type Hybrid Transmission Scheme for Mobile Molecular Communication System.","authors":"Nihit Bhatnagar, Aneerban Roy, Sandeep Joshi","doi":"10.1109/TNB.2025.3610622","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we consider a three-dimensional slow diffusive heterogeneous media-based mobile molecular communication (MC) system, with the communicating devices as point transmitters and passive spherical-shaped receiver nanomachines (NMs). For the considered slow diffusive MC system, we propose a time-varying stochastic diffusivity-based model for communicating devices and information-carrying molecules, and we characterize the mobile MC channel by the channel impulse response (CIR) and derive its mean. For the considered slow and stochastic diffusivity-based mobile MC system, we propose a novel silence-based multi-type hybrid transmission scheme, which combines communication through silence (CtS) with molecular shift keying (MoSK) and concentration shift keying (CSK) and we derive the closed-form expression for the average probability of error. For the slow diffusive environment, we compare the proposed transmission scheme with the position and concentration-based run-length aware, MoSK, and CSK transmission schemes. For the proposed silence-based multi-type hybrid and considered position and concentration-based run-length aware transmission schemes, we design their respective optimal threshold detectors. The proposed scheme outperforms and shows robust behavior in the presence of inter-symbol interference.</p>","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on NanoBioscience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1109/TNB.2025.3610622","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we consider a three-dimensional slow diffusive heterogeneous media-based mobile molecular communication (MC) system, with the communicating devices as point transmitters and passive spherical-shaped receiver nanomachines (NMs). For the considered slow diffusive MC system, we propose a time-varying stochastic diffusivity-based model for communicating devices and information-carrying molecules, and we characterize the mobile MC channel by the channel impulse response (CIR) and derive its mean. For the considered slow and stochastic diffusivity-based mobile MC system, we propose a novel silence-based multi-type hybrid transmission scheme, which combines communication through silence (CtS) with molecular shift keying (MoSK) and concentration shift keying (CSK) and we derive the closed-form expression for the average probability of error. For the slow diffusive environment, we compare the proposed transmission scheme with the position and concentration-based run-length aware, MoSK, and CSK transmission schemes. For the proposed silence-based multi-type hybrid and considered position and concentration-based run-length aware transmission schemes, we design their respective optimal threshold detectors. The proposed scheme outperforms and shows robust behavior in the presence of inter-symbol interference.

基于沉默的移动分子通信系统多类型混合传输方案。
在这项工作中,我们考虑了一个三维缓慢扩散的基于异构介质的移动分子通信(MC)系统,其中通信设备作为点发射器和无源球形接收纳米机(NMs)。对于考虑的慢扩散MC系统,我们提出了一个基于时变随机扩散的通信设备和携带信息的分子模型,我们用信道脉冲响应(CIR)来表征移动MC信道,并推导了它的平均值。针对基于缓慢随机扩散的移动MC系统,提出了一种基于沉默的多类型混合传输方案,该方案将沉默通信(CtS)与分子移位键控(MoSK)和浓度移位键控(CSK)相结合,并推导了平均误差概率的封闭表达式。对于慢扩散环境,我们将所提出的传输方案与基于位置和浓度的行程感知、MoSK和CSK传输方案进行了比较。对于所提出的基于沉默的多类型混合传输方案和考虑位置和浓度的传输方案,我们设计了各自的最优阈值检测器。该方案在存在码间干扰的情况下表现出较好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on NanoBioscience
IEEE Transactions on NanoBioscience 工程技术-纳米科技
CiteScore
7.00
自引率
5.10%
发文量
197
审稿时长
>12 weeks
期刊介绍: The IEEE Transactions on NanoBioscience reports on original, innovative and interdisciplinary work on all aspects of molecular systems, cellular systems, and tissues (including molecular electronics). Topics covered in the journal focus on a broad spectrum of aspects, both on foundations and on applications. Specifically, methods and techniques, experimental aspects, design and implementation, instrumentation and laboratory equipment, clinical aspects, hardware and software data acquisition and analysis and computer based modelling are covered (based on traditional or high performance computing - parallel computers or computer networks).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信