质量和成本改进的可再生时间响应DNA逻辑门。

IF 4.4 4区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Mohammad Ataee Zolfaghari, Ali Jahanian
{"title":"质量和成本改进的可再生时间响应DNA逻辑门。","authors":"Mohammad Ataee Zolfaghari, Ali Jahanian","doi":"10.1109/TNB.2025.3569127","DOIUrl":null,"url":null,"abstract":"<p><p>DNA strands have been used recently as one of the ideal materials in molecular computation because of the fascinating properties of these molecules, like high parallelism and programmability. Several architectures are proposed in recent years for design DNA-based logic gates. These gates have improved through time in several properties like scalability, time responsiveness, output quality, and material utilization. However, as their fundamental limitations, these gates are considered to be disposable, and also, can impose high costs. The mentioned issues can decrease their practicality. Hence, in recent years, researchers have proposed several methods to address these limitations. However, the reported methods have some drawbacks, such as low restoration quality and degraded output concentration. Also, some of these gates use the dual-rail design that results in high complexity and cost. This paper introduces a design scheme to solve the disposability of a DNA-based gate with better gate-restoration and output quality compared to the addressed methods considerably. So that, in this work successful to restoration the gate up to the 90% than existing methods, and achieved the output quality about four-fold than the previous method. Moreover, it uses the single-rail method for representing the inputs and output signals that decrease the manufacturing cost of the system.</p>","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quality and Cost Improved Renewable Time-Responsive DNA Logic Gates.\",\"authors\":\"Mohammad Ataee Zolfaghari, Ali Jahanian\",\"doi\":\"10.1109/TNB.2025.3569127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>DNA strands have been used recently as one of the ideal materials in molecular computation because of the fascinating properties of these molecules, like high parallelism and programmability. Several architectures are proposed in recent years for design DNA-based logic gates. These gates have improved through time in several properties like scalability, time responsiveness, output quality, and material utilization. However, as their fundamental limitations, these gates are considered to be disposable, and also, can impose high costs. The mentioned issues can decrease their practicality. Hence, in recent years, researchers have proposed several methods to address these limitations. However, the reported methods have some drawbacks, such as low restoration quality and degraded output concentration. Also, some of these gates use the dual-rail design that results in high complexity and cost. This paper introduces a design scheme to solve the disposability of a DNA-based gate with better gate-restoration and output quality compared to the addressed methods considerably. So that, in this work successful to restoration the gate up to the 90% than existing methods, and achieved the output quality about four-fold than the previous method. Moreover, it uses the single-rail method for representing the inputs and output signals that decrease the manufacturing cost of the system.</p>\",\"PeriodicalId\":13264,\"journal\":{\"name\":\"IEEE Transactions on NanoBioscience\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on NanoBioscience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1109/TNB.2025.3569127\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on NanoBioscience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1109/TNB.2025.3569127","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,DNA链已被用作分子计算的理想材料之一,因为这些分子具有高度并行性和可编程性等令人着迷的特性。近年来提出了几种基于dna的逻辑门设计架构。随着时间的推移,这些门在可伸缩性、时间响应性、输出质量和材料利用率等方面得到了改进。然而,由于它们的基本限制,这些门被认为是一次性的,而且可能会带来很高的成本。上述问题会降低它们的实用性。因此,近年来,研究人员提出了几种方法来解决这些限制。然而,已有的方法存在还原质量低、输出浓度降低等缺点。此外,其中一些门使用双轨设计,导致高复杂性和成本。本文介绍了一种解决基于dna的门的可丢弃性的设计方案,该方案具有较好的门恢复和输出质量。因此,在本工作中,成功地将栅极恢复到现有方法的90%以上,并获得了比以前的方法约四倍的输出质量。此外,它使用单轨方法来表示输入和输出信号,从而降低了系统的制造成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quality and Cost Improved Renewable Time-Responsive DNA Logic Gates.

DNA strands have been used recently as one of the ideal materials in molecular computation because of the fascinating properties of these molecules, like high parallelism and programmability. Several architectures are proposed in recent years for design DNA-based logic gates. These gates have improved through time in several properties like scalability, time responsiveness, output quality, and material utilization. However, as their fundamental limitations, these gates are considered to be disposable, and also, can impose high costs. The mentioned issues can decrease their practicality. Hence, in recent years, researchers have proposed several methods to address these limitations. However, the reported methods have some drawbacks, such as low restoration quality and degraded output concentration. Also, some of these gates use the dual-rail design that results in high complexity and cost. This paper introduces a design scheme to solve the disposability of a DNA-based gate with better gate-restoration and output quality compared to the addressed methods considerably. So that, in this work successful to restoration the gate up to the 90% than existing methods, and achieved the output quality about four-fold than the previous method. Moreover, it uses the single-rail method for representing the inputs and output signals that decrease the manufacturing cost of the system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on NanoBioscience
IEEE Transactions on NanoBioscience 工程技术-纳米科技
CiteScore
7.00
自引率
5.10%
发文量
197
审稿时长
>12 weeks
期刊介绍: The IEEE Transactions on NanoBioscience reports on original, innovative and interdisciplinary work on all aspects of molecular systems, cellular systems, and tissues (including molecular electronics). Topics covered in the journal focus on a broad spectrum of aspects, both on foundations and on applications. Specifically, methods and techniques, experimental aspects, design and implementation, instrumentation and laboratory equipment, clinical aspects, hardware and software data acquisition and analysis and computer based modelling are covered (based on traditional or high performance computing - parallel computers or computer networks).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信