Vlasta Demeckova, Veronika Demcakova, Jana Sedlakova-Kadukova
{"title":"化学和生物合成纳米银的免疫影响差异。","authors":"Vlasta Demeckova, Veronika Demcakova, Jana Sedlakova-Kadukova","doi":"10.1109/TNB.2025.3564822","DOIUrl":null,"url":null,"abstract":"<p><p>Silver nanoparticles (AgNPs) are widely used for their antimicrobial properties but pose risks like environmental contamination and potential harm to human health. Nanoparticles' small size facilitates translocation within the body, often bringing them into contact with blood. Most toxicological research focuses on chemically synthesized AgNPs (CAgNPs) and their effects on microbes and animal cells. Fewer studies explore biologically synthesized AgNPs (BAgNPs) on animal cells, and their impact on blood components is uncertain with varied findings due to differences in size and stability. This study examined BAgNPs' effects on blood components in healthy and diseased states, using algae Parachlorella kessleri for synthesis. Nanoparticle size and morphology were assessed via TEM and UV-Vis spectrophotometry. Exposure to BAgNPs resulted in an increased number of echinocytes, reduced neutrophils, and decreased leukocyte viability. Unlike CAgNPs, BAgNPs did not increase macrophage proliferation. Differences in biological properties between BAgNPs and CAgNPs stem from their colloidal stability in varying environments. CAgNPs, stabilized electrostatically, exhibited greater aggregation in environments with higher salinity and lower pH, diminishing their biological effects in human blood. Hence, electrostatically stabilized chemically produced AgNPs may not be suitable for biomedical applications.</p>","PeriodicalId":13264,"journal":{"name":"IEEE Transactions on NanoBioscience","volume":"PP ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differences in immunological impact of chemically and biologically synthesized silver nanoparticles.\",\"authors\":\"Vlasta Demeckova, Veronika Demcakova, Jana Sedlakova-Kadukova\",\"doi\":\"10.1109/TNB.2025.3564822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Silver nanoparticles (AgNPs) are widely used for their antimicrobial properties but pose risks like environmental contamination and potential harm to human health. Nanoparticles' small size facilitates translocation within the body, often bringing them into contact with blood. Most toxicological research focuses on chemically synthesized AgNPs (CAgNPs) and their effects on microbes and animal cells. Fewer studies explore biologically synthesized AgNPs (BAgNPs) on animal cells, and their impact on blood components is uncertain with varied findings due to differences in size and stability. This study examined BAgNPs' effects on blood components in healthy and diseased states, using algae Parachlorella kessleri for synthesis. Nanoparticle size and morphology were assessed via TEM and UV-Vis spectrophotometry. Exposure to BAgNPs resulted in an increased number of echinocytes, reduced neutrophils, and decreased leukocyte viability. Unlike CAgNPs, BAgNPs did not increase macrophage proliferation. Differences in biological properties between BAgNPs and CAgNPs stem from their colloidal stability in varying environments. CAgNPs, stabilized electrostatically, exhibited greater aggregation in environments with higher salinity and lower pH, diminishing their biological effects in human blood. Hence, electrostatically stabilized chemically produced AgNPs may not be suitable for biomedical applications.</p>\",\"PeriodicalId\":13264,\"journal\":{\"name\":\"IEEE Transactions on NanoBioscience\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on NanoBioscience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1109/TNB.2025.3564822\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on NanoBioscience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1109/TNB.2025.3564822","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Differences in immunological impact of chemically and biologically synthesized silver nanoparticles.
Silver nanoparticles (AgNPs) are widely used for their antimicrobial properties but pose risks like environmental contamination and potential harm to human health. Nanoparticles' small size facilitates translocation within the body, often bringing them into contact with blood. Most toxicological research focuses on chemically synthesized AgNPs (CAgNPs) and their effects on microbes and animal cells. Fewer studies explore biologically synthesized AgNPs (BAgNPs) on animal cells, and their impact on blood components is uncertain with varied findings due to differences in size and stability. This study examined BAgNPs' effects on blood components in healthy and diseased states, using algae Parachlorella kessleri for synthesis. Nanoparticle size and morphology were assessed via TEM and UV-Vis spectrophotometry. Exposure to BAgNPs resulted in an increased number of echinocytes, reduced neutrophils, and decreased leukocyte viability. Unlike CAgNPs, BAgNPs did not increase macrophage proliferation. Differences in biological properties between BAgNPs and CAgNPs stem from their colloidal stability in varying environments. CAgNPs, stabilized electrostatically, exhibited greater aggregation in environments with higher salinity and lower pH, diminishing their biological effects in human blood. Hence, electrostatically stabilized chemically produced AgNPs may not be suitable for biomedical applications.
期刊介绍:
The IEEE Transactions on NanoBioscience reports on original, innovative and interdisciplinary work on all aspects of molecular systems, cellular systems, and tissues (including molecular electronics). Topics covered in the journal focus on a broad spectrum of aspects, both on foundations and on applications. Specifically, methods and techniques, experimental aspects, design and implementation, instrumentation and laboratory equipment, clinical aspects, hardware and software data acquisition and analysis and computer based modelling are covered (based on traditional or high performance computing - parallel computers or computer networks).