Iet Generation Transmission & Distribution最新文献

筛选
英文 中文
Determination of sub-synchronous interactions between AC systems and Grid-Forming converters in bipolar HVDC connections 双极高压直流连接中交流系统与并网变流器之间次同步相互作用的确定
IF 2 4区 工程技术
Iet Generation Transmission & Distribution Pub Date : 2024-10-22 DOI: 10.1049/gtd2.13285
Francesco Giacomo Puricelli, Pierre Rault, Carmen Cardozo, Jef Beerten
{"title":"Determination of sub-synchronous interactions between AC systems and Grid-Forming converters in bipolar HVDC connections","authors":"Francesco Giacomo Puricelli,&nbsp;Pierre Rault,&nbsp;Carmen Cardozo,&nbsp;Jef Beerten","doi":"10.1049/gtd2.13285","DOIUrl":"https://doi.org/10.1049/gtd2.13285","url":null,"abstract":"<p>Numerous High-Voltage Direct Current (HVDC) interconnections in a bipolar configuration are currently in the design phase and set to become operational in the next decade. In the meantime, the shift from Synchronous Generators (SGs) to converter-interfaced units is raising concerns over the stability of power systems. Grid-Forming (GFM) control in converters, as opposed to Grid-Following (GFL) mode, is anticipated to replicate, to some extent, the stabilizing behaviour of SGs. An open research question is whether mimicking the behaviour of SGs with GFM converters would, in turn, induce sub-synchronous oscillations similar to those present in power systems dominated by SGs. This paper investigates sub-synchronous interactions between converters and asynchronous AC systems at the terminals of a bipolar HVDC connection. A modal analysis based on a state-space approach reveals the participation of converters as well as the influence of control modes and system parameters on these low-frequency oscillations. Time-domain simulations of a non-linear model in EMTP software support the findings of the modal analysis.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"18 23","pages":"3878-3894"},"PeriodicalIF":2.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13285","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142869189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing distance protection in transmission grids with high penetration of renewable energy sources through cooperative protection 通过协同保护加强可再生能源渗透率高的输电网的距离保护
IF 2 4区 工程技术
Iet Generation Transmission & Distribution Pub Date : 2024-10-21 DOI: 10.1049/gtd2.13295
Sayed Mahdi Koloushani, Seyed Abbas Taher
{"title":"Enhancing distance protection in transmission grids with high penetration of renewable energy sources through cooperative protection","authors":"Sayed Mahdi Koloushani,&nbsp;Seyed Abbas Taher","doi":"10.1049/gtd2.13295","DOIUrl":"https://doi.org/10.1049/gtd2.13295","url":null,"abstract":"<p>This article introduces innovative protection strategies, including cooperative protection, for power transmission grids amidst a significant shift towards renewable energy sources (RES) such as wind and solar power, as well as inverter-based resources (IBRs). The method employs a global consensus algorithm to achieve cooperative protection efficiently. This scheme leverages consensus protocols to dynamically oversee distance relay decisions, ensuring efficient fault detection and localization. The decentralized nature of the proposed method enhances robustness and security, while its high-speed operation is ensured through non-iterative global consensus algorithms, which provide rapid fault detection and localization crucial for real-time protection. By incorporating virtual leaders and leveraging existing communication infrastructure, the method achieves superior selectivity in identifying faulty lines, enhancing the reliability and stability of power transmission grids with high-RES penetration. Notably, the method does not require learning and training processes, making it adaptable to varying power system topologies without the need for extensive retraining or adaptation periods. The proposed methodology enables simultaneous participation in multiple protection zones by establishing interaction rules between agents. Virtual leaders simplify the selection of protection areas, enhancing scalability and fault localization. Simulation results conducted on the IEEE 39-bus test system validate the effectiveness of the proposed method.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"18 21","pages":"3462-3475"},"PeriodicalIF":2.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13295","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A node deployment and resource optimization method for CPDS based on cloud-fog-edge collaboration 一种基于云-雾-边协作的 CPDS 节点部署和资源优化方法
IF 2 4区 工程技术
Iet Generation Transmission & Distribution Pub Date : 2024-10-21 DOI: 10.1049/gtd2.13286
Xiaoping Xiong, Geng Yang
{"title":"A node deployment and resource optimization method for CPDS based on cloud-fog-edge collaboration","authors":"Xiaoping Xiong,&nbsp;Geng Yang","doi":"10.1049/gtd2.13286","DOIUrl":"https://doi.org/10.1049/gtd2.13286","url":null,"abstract":"<p>With the development of the Internet of Things (IoT) in power distribution and the advancement of energy information integration technologies, the explosive growth in network data volume caused by massive terminal devices connecting to the power distribution network has become a significant challenge. Multi-terminal collaborative computing is a key approach to addressing issues such as high latency and high energy consumption. In this article, fog computing is introduced into the computing network of the power distribution system, and a cloud-fog-edge collaborative computing architecture for intelligent power distribution networks is proposed. Within this framework, an improved weighted K-means method based on information entropy theory is presented for node partitioning. Subsequently, an improved multi-objective particle swarm optimization algorithm (MWM-MOPSO) is employed to solve the task resource allocation problem. Finally, the effectiveness of the proposed architecture and allocation strategy is validated through simulations on the OPNET and PureEdgeSim platforms. The results demonstrate that, compared to traditional cloud-edge service architectures, the proposed architecture and task offloading scheme achieve better performance in terms of processing latency and energy consumption.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"18 21","pages":"3524-3537"},"PeriodicalIF":2.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13286","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial of the special issue: Interactions between AC and DC power systems, and related considerations 特刊编辑:交流和直流电源系统之间的相互作用及相关考虑因素
IF 2 4区 工程技术
Iet Generation Transmission & Distribution Pub Date : 2024-10-21 DOI: 10.1049/gtd2.13304
Khaled Ahmed, Ben Marshall
{"title":"Editorial of the special issue: Interactions between AC and DC power systems, and related considerations","authors":"Khaled Ahmed,&nbsp;Ben Marshall","doi":"10.1049/gtd2.13304","DOIUrl":"https://doi.org/10.1049/gtd2.13304","url":null,"abstract":"&lt;p&gt;Across the world, in order to meet environmental targets, electricity power networks are transitioning from conventional, predominantly fossil-fuelled synchronous power generation towards renewable and other low-carbon alternatives. These resources, particularly wind and solar, are often not located in areas for which historic transmission networks were originally designed. These resources also interface that network based on inverter connections to the grid, whose performance is wholly driven by the nature of their control &amp; protection (C&amp;P) logic, rather than inherently responding based on their physics, as would a synchronous machine. In addition, the need for connection, network extension, and AC network reinforcement is increasingly driving the global adoption of HVDC systems, whether as standalone point-to-point designs or more complex multi-terminal DC networks serving multiple purposes. HVDC is again an inverter/rectifying power electronic converter interface to AC grids, both existing and new (e.g. offshore) whose performance is defined by the nature of their C&amp;P. In all cases, these HVDC systems and inverter-based resources (IBR) must be interfaced with the existing AC grid, ensuring that the performance required to maintain AC network stability and security for consumers is upheld. Additionally, care must be taken to prevent interactions between AC-connected resources and between the AC and DC systems, and within the DC system that could lead to instability. This represents a need for new tools, and techniques for managing these new systems, alongside approaches able to manage the black-boxed nature of the C&amp;P being considered, where its effect can be observed, but not the underlying structural or tuning detail that causes it.&lt;/p&gt;&lt;p&gt;Electrical power networks are currently undergoing a significant transition towards IBR and HVDC dominance. There are several challenges across this transition, including dependency on the availability of renewable energy resources, low inertia, lack of spinning reserve, insufficient fault current for the correct operation of AC protection, and the inability to source or sink large amounts of active power in weak or remote areas of the AC networks. As a result, future power networks with increased renewable generation will face two major challenges: reliability and stable operation.&lt;/p&gt;&lt;p&gt;Grid-forming converters and HVDC systems have recently been proposed as some of the key approaches that may address these challenges. In order to achieve this objective further investigation and consideration of innovative solutions are required to best tackle key technical issues such as interactions between AC and DC power systems, coordination between grid-forming converters, grid-following converters, and conventional power plants, stability concerns in weak AC grids, multi-terminal HVDC operation, DC network stability and its capacity to support AC stability, multi-terminal multi-vendor interoperabi","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"18 23","pages":"3763-3764"},"PeriodicalIF":2.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13304","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stochastic-gradient-based control algorithms for power quality enhancement in solar photovoltaic interfaced three-phase distribution system 基于随机梯度的控制算法提高太阳能光伏三相配电系统的电能质量
IF 2 4区 工程技术
Iet Generation Transmission & Distribution Pub Date : 2024-10-20 DOI: 10.1049/gtd2.13300
Dinanath Prasad, Narendra Kumar, Rakhi Sharma, Majed A. Alotaibi, Hasmat Malik, Fausto Pedro García Márquez, Mohammad Asef Hossaini
{"title":"Stochastic-gradient-based control algorithms for power quality enhancement in solar photovoltaic interfaced three-phase distribution system","authors":"Dinanath Prasad,&nbsp;Narendra Kumar,&nbsp;Rakhi Sharma,&nbsp;Majed A. Alotaibi,&nbsp;Hasmat Malik,&nbsp;Fausto Pedro García Márquez,&nbsp;Mohammad Asef Hossaini","doi":"10.1049/gtd2.13300","DOIUrl":"https://doi.org/10.1049/gtd2.13300","url":null,"abstract":"<p>Here, stochastic-gradient-based adaptive control algorithms have been discussed and employed for power quality enhancement in a Photovoltaics (PV) integrated distribution system. Least mean square (LMS), least mean fourth (LMF), sign-error LMS, and <span></span><math>\u0000 <semantics>\u0000 <mi>ε</mi>\u0000 <annotation>$epsilon $</annotation>\u0000 </semantics></math>-normalised LMS (<span></span><math>\u0000 <semantics>\u0000 <mi>ε</mi>\u0000 <annotation>$epsilon $</annotation>\u0000 </semantics></math>-NLMS) have been implemented as control algorithms for the estimation of fundamental load current. The performances of these adaptive algorithms are compared under steady-state and dynamic conditions under the non-linear load conditions in a closed-loop three-phase system. The main aim of implementing these algorithms is reactive power compensation, power quality enhancement, and load balancing in a single-stage three-phase grid-tied PV system. The hysteresis current control (HCC) technique is used to generate switching pulses for the three-phase Distribution Static Power Compensator (DSTATCOM). An MPPT is also employed to ensure maximum power delivery from the solar PV array. PV integrated three-phase single-stage distribution system with adaptive control algorithms is implemented in MATLAB/Simulink environment as well as in experimental environment to achieve the goals per standard IEEE-519.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"18 22","pages":"3567-3578"},"PeriodicalIF":2.0,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13300","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Short-circuit current of a hydropower plant with consideration of constant switching and fault arc voltages 考虑到恒定开关电压和故障电弧电压的水电站短路电流
IF 2 4区 工程技术
Iet Generation Transmission & Distribution Pub Date : 2024-10-17 DOI: 10.1049/gtd2.13297
Darko Brankovic, Robert Schuerhuber
{"title":"Short-circuit current of a hydropower plant with consideration of constant switching and fault arc voltages","authors":"Darko Brankovic,&nbsp;Robert Schuerhuber","doi":"10.1049/gtd2.13297","DOIUrl":"https://doi.org/10.1049/gtd2.13297","url":null,"abstract":"<p>The correct generator circuit breaker (GCB) dimensioning is essential for the safe and reliable operation of a power plant or generation system. The dimensioning is usually based on standardized calculation methods according to standards (IEC standard 60909-0, IEC/IEEE standard 62271-37-013, IEEE Std C37), often supplemented by selected transient calculations. A non-systematic approach can often be observed here, which does not adequately take into account significant influencing variables or operating states of the generator. This article therefore systematically examines various parameters that influence the short-circuit current components of the generator and are relevant for the dimensioning of the generator circuit-breaker: short-circuit angle, operating point, impedance ratios, phase clearing, switching arc, and fault arc. The results of the current parameters most relevant to the dimensioning of the GCB were then compared for different calculation methods. Special attention was paid to the effect of the switching and fault arc, which were modelled as a constant arc voltage, and its effect on the short-circuit currents is systematically recorded. This work aims to summarize all relevant variables that influence the generator short-circuit current and are relevant for the dimensioning of the GCB and to present the different results based on a short-circuit calculation according to the standard and transient calculation to create a basis for a proper dimensioning of the generator circuit breaker.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"18 21","pages":"3476-3486"},"PeriodicalIF":2.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13297","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-speed main protection for multiterminal LCC-MMC-UHVDC based on initial wave process comparison 基于初波过程比较的lcc - mmc -特高压直流多端子高速主保护
IF 2 4区 工程技术
Iet Generation Transmission & Distribution Pub Date : 2024-10-16 DOI: 10.1049/gtd2.13301
Yan Li, Jun Li, Guiyuan Li, Runbin Cao, Xinjie Zeng, Ning Tong
{"title":"High-speed main protection for multiterminal LCC-MMC-UHVDC based on initial wave process comparison","authors":"Yan Li,&nbsp;Jun Li,&nbsp;Guiyuan Li,&nbsp;Runbin Cao,&nbsp;Xinjie Zeng,&nbsp;Ning Tong","doi":"10.1049/gtd2.13301","DOIUrl":"https://doi.org/10.1049/gtd2.13301","url":null,"abstract":"<p>The multiterminal LCC-MMC-UHVDC, which employs an LCC on the rectifier side and multiple FHMMCs on the inverter side, has emerged as a cutting-edge technology. Nevertheless, distinct disparities in their protection requirements compared to those of conventional DC grids pose notable challenges in attaining the desired attributes. This paper first derives variation patterns in the time domain of initial waves under different fault conditions. By utilizing the theoretically calculated rate-of-change waveform for the backward current traveling wave in an external fault scenario as a reference, a main protection relay grounded in initial wave process comparison is proposed. This approach capitalizes on the disparity observed in internal faults with the theoretical waveform. To mitigate maloperations stemming from the employment of a non-directional start-up criterion in reverse fault scenarios, subtle noise patterns, mimicking the theoretical waveforms, are infused into the actual waveforms. This approach averts maloperations in reverse faults and obviates the need for added delays associated with directional start-up criteria, thereby enhancing both speed and security. Case studies demonstrate that the proposed protection offers sufficient selectivity and a resistive tolerance of 600 ohms and boasts a speed of 0.2 ms, satisfying the requirements of 800 kV UHVDC systems.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"18 24","pages":"4302-4327"},"PeriodicalIF":2.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13301","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wavelet CNN-LSTM time series forecasting of electricity power generation considering biomass thermal systems 考虑生物质热能系统的小波 CNN-LSTM 发电时间序列预测
IF 2 4区 工程技术
Iet Generation Transmission & Distribution Pub Date : 2024-10-15 DOI: 10.1049/gtd2.13292
William Gouvêa Buratto, Rafael Ninno Muniz, Ademir Nied, Carlos Frederico de Oliveira Barros, Rodolfo Cardoso, Gabriel Villarrubia Gonzalez
{"title":"Wavelet CNN-LSTM time series forecasting of electricity power generation considering biomass thermal systems","authors":"William Gouvêa Buratto,&nbsp;Rafael Ninno Muniz,&nbsp;Ademir Nied,&nbsp;Carlos Frederico de Oliveira Barros,&nbsp;Rodolfo Cardoso,&nbsp;Gabriel Villarrubia Gonzalez","doi":"10.1049/gtd2.13292","DOIUrl":"https://doi.org/10.1049/gtd2.13292","url":null,"abstract":"<p>The use of biomass as a renewable energy source for electricity generation has gained attention due to its sustainability and environmental benefits. However, the intermittent electricity demand poses challenges for optimizing electricity generation in thermal systems. Time series forecasting techniques are crucial in addressing these challenges by providing accurate predictions of biomass availability and electricity generation. Here, wavelet transform is applied for denoising, convolutional neural networks (CNN) are used to extract features of the time series, and long short-term memory (LSTM) is applied to perform the predictions. The result of the mean absolute percentage error equal to 0.0148 shows that the wavelet CNN-LSTM is a promising machine-learning methodology for electricity generation forecasting. Additionally, this paper discusses the importance of model evaluation techniques and validation strategies to assess the performance of forecasting models in real-world applications. The major contribution of this paper is related to improving forecasting using a hybrid method that outperforms other models based on deep learning. Finally, future research directions and potential advancements in time series forecasting for biomass thermal systems are outlined to foster continued innovation in sustainable energy generation.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"18 21","pages":"3437-3451"},"PeriodicalIF":2.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13292","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing decentralized implementation of state estimation in active distribution networks 优化主动配电网络中状态估计的分散实施
IF 2 4区 工程技术
Iet Generation Transmission & Distribution Pub Date : 2024-10-15 DOI: 10.1049/gtd2.13296
Mohammad Gholami, Aref Eskandari, Sajjad Fattaheian-Dehkordi, Matti Lehtonen
{"title":"Optimizing decentralized implementation of state estimation in active distribution networks","authors":"Mohammad Gholami,&nbsp;Aref Eskandari,&nbsp;Sajjad Fattaheian-Dehkordi,&nbsp;Matti Lehtonen","doi":"10.1049/gtd2.13296","DOIUrl":"https://doi.org/10.1049/gtd2.13296","url":null,"abstract":"<p>The challenges facing active distribution networks have highlighted the position of the distribution system state estimation (DSSE) process in the distribution management systems as its most important function. Here, regarding the extensive scale of distribution networks and the weaknesses of centralized methods, the decentralized implementation of the DSSE process has received considerable attention. However, predefined network partitioning is supposed in previous works and zone size effects on the performance of the DSSE process have not been assessed. In response, a method for finding the optimal number of network zones and their size is proposed here. For this purpose, initially, an algorithm is used to partition the network into all possible configurations with different sizes. Subsequently, performance metrics affected by zone sizes, such as execution time, accuracy of the DSSE results, and reliability in achieving the results at the control centre, are modelled. Finally, by applying the decentralized DSSE method across all partitioning scenarios and calculating performance metrics, the most efficient and cost-effective partitioning scenario can be identified. The performance of the proposed method is evaluated using the modified 77-bus UK distribution network as an active test case, and the findings are subsequently presented and analysed.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"18 21","pages":"3538-3553"},"PeriodicalIF":2.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13296","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-objective and multi-stage low-carbon planning of park integrated energy system considering random outages from superior power grid 考虑上级电网随机停电的园区综合能源系统多目标、多阶段低碳规划
IF 2 4区 工程技术
Iet Generation Transmission & Distribution Pub Date : 2024-10-15 DOI: 10.1049/gtd2.13303
Xunpu Jiang, Zhejing Bao, Jianwei Chen, Miao Yu
{"title":"Multi-objective and multi-stage low-carbon planning of park integrated energy system considering random outages from superior power grid","authors":"Xunpu Jiang,&nbsp;Zhejing Bao,&nbsp;Jianwei Chen,&nbsp;Miao Yu","doi":"10.1049/gtd2.13303","DOIUrl":"https://doi.org/10.1049/gtd2.13303","url":null,"abstract":"<p>This article proposes a multi-objective and multi-stage low-carbon planning approach for park integrated energy systems (PIES) considering the impacts of random outages from the superior electrical grid. This approach incorporates optimal multi-stage construction sequencing and stepped carbon emission trading to leverage the economic and low-carbon benefits of long-term planning. First, the islanding modes of PIES are described using four random variables: island type, duration, start time, and typical day of occurrence, from which islanding scenarios are generated based on scenario tree. Next, a multi-objective planning model that considers both economics and reliability is constructed, with the objectives of minimizing the total lifecycle planning cost and the expected economic loss during islanding. The improved Normalized Normal Constraint (NNC) method is proposed to solve the multi-objective planning problem. Then, the fuzzy membership function is used to determine the optimal compromise solution, resulting in a planning scheme that balances economic efficiency and supply reliability. Finally, simulations indicate that, at the cost of a slight increase in planning expenses, the proposed model significantly reduces the loss costs under islanding modes compared with single-objective economic-focused planning. Additionally, the improved NNC method can achieve a more uniform Pareto frontier compared with the conventional NNC method.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"18 22","pages":"3592-3607"},"PeriodicalIF":2.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13303","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信