{"title":"Interval Secure Event-Triggered Mechanism for Load Frequency Control Active Defense Against DoS Attack","authors":"Zihao Cheng, Songlin Hu, Dong Yue, Xuhui Bu, Xiaolong Ruan, Chenggang Xu","doi":"10.1109/tcyb.2024.3488208","DOIUrl":"https://doi.org/10.1109/tcyb.2024.3488208","url":null,"abstract":"","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"23 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lei Zhang;Binglu Wang;Yongqiang Zhao;Yuan Yuan;Tianfei Zhou;Zhijun Li
{"title":"Collaborative Multimodal Fusion Network for Multiagent Perception","authors":"Lei Zhang;Binglu Wang;Yongqiang Zhao;Yuan Yuan;Tianfei Zhou;Zhijun Li","doi":"10.1109/TCYB.2024.3491756","DOIUrl":"10.1109/TCYB.2024.3491756","url":null,"abstract":"With the increasing popularity of autonomous driving systems and their applications in complex transportation scenarios, collaborative perception among multiple intelligent agents has become an important research direction. Existing single-agent multimodal fusion approaches are limited by their inability to leverage additional sensory data from nearby agents. In this article, we present the collaborative multimodal fusion network (CMMFNet) for distributed perception in multiagent systems. CMMFNet first extracts modality-specific features from LiDAR point clouds and camera images for each agent using dual-stream neural networks. To overcome the ambiguity in-depth prediction, we introduce a collaborative depth supervision module that projects dense fused point clouds onto image planes to generate more accurate depth ground truths. We then present modality-aware fusion strategies to aggregate homogeneous features across agents while preserving their distinctive properties. To align heterogeneous LiDAR and camera features, we introduce a modality consistency learning method. Finally, a transformer-based fusion module dynamically captures cross-modal correlations to produce a unified representation. Comprehensive evaluations on two extensive multiagent perception datasets, OPV2V and V2XSet, affirm the superiority of CMMFNet in detection performance, establishing a new benchmark in the field.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"55 1","pages":"486-498"},"PeriodicalIF":9.4,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Granular Computing for Machine Learning: Pursuing New Development Horizons","authors":"Witold Pedrycz","doi":"10.1109/TCYB.2024.3487934","DOIUrl":"10.1109/TCYB.2024.3487934","url":null,"abstract":"Undoubtedly, machine learning (ML) has demonstrated a wealth of far-reaching successes present both at the level of fundamental developments, design methodologies and numerous application areas, quite often encountered in domains requiring a high level of autonomous behavior. Over the passage of time, there are growing challenges of privacy and security, interpretability, explainability, confidence (credibility), and computational sustainability, among others. In this study, we advocate that these quests could be addressed by casting them both conceptually and algorithmically in the unified environment augmented by the principles of granular computing. It is demonstrated that the level of abstraction, delivered by granular computing plays a pivotal role in the interpretation by quantifying the level of credibility of ML constructs. The study also highlights the principles of granular computing and elaborates on its landscape. The original idea of a comprehensive and unified framework of data-knowledge environment of ML is introduced along with a detailed discussion on how data and knowledge are used in a seamless fashion by invoking granular embedding and producing relevant loss functions. Key categories of knowledge-data integration realized at the levels of data and model (involving symbolic/qualitative models and physics-oriented models) and investigated.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"55 1","pages":"460-471"},"PeriodicalIF":9.4,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Distributed Secure Control for Nonlinear Descriptor Multiagent Systems With Unknown Inputs Under Denial-of-Service Attacks","authors":"Tianbiao Shi;Fanglai Zhu","doi":"10.1109/TCYB.2024.3486562","DOIUrl":"10.1109/TCYB.2024.3486562","url":null,"abstract":"This article investigates the secure control problem for a class of Lipschitz nonlinear descriptor multiagent systems (MASs) with unknown inputs under Denial-of-Service (DoS) attacks. In order to address the presence of unknown state variables and external disturbances in both the state and output equations, a local unknown input observer (UIO) is developed for each follower agent. The proposed UIO is capable of simultaneously estimating the system state, measurement noise and unknown inputs through an interval observer. With regards to DoS attacks, we consider two types: those that maintain connectivity and those that paralyze it by disrupting the structure of the information communication topology graph. By utilizing the proposed UIO, a distributed compensation controller is designed to achieve asymptotic consensus for leader-following MASs under DoS attacks. Additionally, a comprehensive stability analysis of the closed-loop system is provided, taking into account switching systems. Finally, two simulation examples are presented to validate the effectiveness of the proposed UIO-based distributed secure control scheme.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"55 1","pages":"472-485"},"PeriodicalIF":9.4,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Safe Reinforcement Learning: Optimal Formation Control With Collision Avoidance of Multiple Satellite Systems","authors":"Hui Yu;Liqian Dou;Xiuyun Zhang;Jinna Li;Qun Zong","doi":"10.1109/TCYB.2024.3491582","DOIUrl":"10.1109/TCYB.2024.3491582","url":null,"abstract":"This article addresses the collision avoidance and formation control problem for multisatellite systems. A novel safe reinforcement learning (RL) algorithm based on an adaptive dynamic programming framework is proposed. The highlights of the algorithm are the adaptive distance-varying learning method to integrate online data with historical data and the usage of the barrier function (BF) to achieve collision avoidance. First, the BF is introduced into the designed cost function such that the multisatellite formation system can achieve obstacle avoidance and guarantee the safety. Next, a safe RL algorithm is developed through the critic network structure. A distance-varying weight is introduced, which combines experience replay samples with extrapolation samples. By minimizing the cost function, the optimal formation control policy can be obtained with an adaptive formation and self-learning ability. Then, the stability and safety of the proposed algorithm are analyzed. Finally, the effectiveness and superiority of the proposed algorithm are verified by numerical simulations.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"55 1","pages":"447-459"},"PeriodicalIF":9.4,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}