{"title":"脑控轮式移动机器人:一种结合概率脑机接口和模型预测控制的框架。","authors":"Xinyu Yu, Xiaojun Yu","doi":"10.1109/TCYB.2025.3580726","DOIUrl":null,"url":null,"abstract":"<p><p>Brain-controlled systems have experienced significant advancements in overall performance, largely driven by continuous optimization and innovation in electroencephalography (EEG) acquisition experimental paradigms and decoding algorithms. However, their applications still face challenges, including limited control precision and low efficiency. In this article, we focus on a wheeled mobile robot (WMR) as the control object and propose a novel brain-controlled framework that combines a probabilistic brain-computer interface (BCI) and a model predictive controller (MPC). First, the probabilistic BCI is developed, featuring the sigmoid fitting-filter bank canonical correlation analysis (SF-FBCCA) algorithm, which serves as the core of the BCI system by decoding EEG signals and generating brain commands along with their associated probabilities. Second, an auxiliary MPC is integrated into the probabilistic BCI system to provide decision-making assistance while preserving the users' primary brain control authority. The weights of the cost function are adaptively determined based on the command probabilities. Finally, simulation-based evaluations were conducted using the WMR in a path-keeping scenario. The results demonstrate that the proposed framework significantly improves control accuracy and efficiency compared to direct brain control approaches, reducing the average lateral error by 58.02% and the average yaw angle error by 60.06%. Additionally, the MPC employing adaptive weights further improves overall performance. These findings offer theoretical insights and technical references for future research on BCI-based control frameworks.</p>","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"PP ","pages":""},"PeriodicalIF":10.5000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brain-Controlled Wheeled Mobile Robots: A Framework Combining Probabilistic Brain-Computer Interface and Model Predictive Control.\",\"authors\":\"Xinyu Yu, Xiaojun Yu\",\"doi\":\"10.1109/TCYB.2025.3580726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brain-controlled systems have experienced significant advancements in overall performance, largely driven by continuous optimization and innovation in electroencephalography (EEG) acquisition experimental paradigms and decoding algorithms. However, their applications still face challenges, including limited control precision and low efficiency. In this article, we focus on a wheeled mobile robot (WMR) as the control object and propose a novel brain-controlled framework that combines a probabilistic brain-computer interface (BCI) and a model predictive controller (MPC). First, the probabilistic BCI is developed, featuring the sigmoid fitting-filter bank canonical correlation analysis (SF-FBCCA) algorithm, which serves as the core of the BCI system by decoding EEG signals and generating brain commands along with their associated probabilities. Second, an auxiliary MPC is integrated into the probabilistic BCI system to provide decision-making assistance while preserving the users' primary brain control authority. The weights of the cost function are adaptively determined based on the command probabilities. Finally, simulation-based evaluations were conducted using the WMR in a path-keeping scenario. The results demonstrate that the proposed framework significantly improves control accuracy and efficiency compared to direct brain control approaches, reducing the average lateral error by 58.02% and the average yaw angle error by 60.06%. Additionally, the MPC employing adaptive weights further improves overall performance. These findings offer theoretical insights and technical references for future research on BCI-based control frameworks.</p>\",\"PeriodicalId\":13112,\"journal\":{\"name\":\"IEEE Transactions on Cybernetics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TCYB.2025.3580726\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TCYB.2025.3580726","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Brain-Controlled Wheeled Mobile Robots: A Framework Combining Probabilistic Brain-Computer Interface and Model Predictive Control.
Brain-controlled systems have experienced significant advancements in overall performance, largely driven by continuous optimization and innovation in electroencephalography (EEG) acquisition experimental paradigms and decoding algorithms. However, their applications still face challenges, including limited control precision and low efficiency. In this article, we focus on a wheeled mobile robot (WMR) as the control object and propose a novel brain-controlled framework that combines a probabilistic brain-computer interface (BCI) and a model predictive controller (MPC). First, the probabilistic BCI is developed, featuring the sigmoid fitting-filter bank canonical correlation analysis (SF-FBCCA) algorithm, which serves as the core of the BCI system by decoding EEG signals and generating brain commands along with their associated probabilities. Second, an auxiliary MPC is integrated into the probabilistic BCI system to provide decision-making assistance while preserving the users' primary brain control authority. The weights of the cost function are adaptively determined based on the command probabilities. Finally, simulation-based evaluations were conducted using the WMR in a path-keeping scenario. The results demonstrate that the proposed framework significantly improves control accuracy and efficiency compared to direct brain control approaches, reducing the average lateral error by 58.02% and the average yaw angle error by 60.06%. Additionally, the MPC employing adaptive weights further improves overall performance. These findings offer theoretical insights and technical references for future research on BCI-based control frameworks.
期刊介绍:
The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.