IEEE Journal of Selected Topics in Quantum Electronics最新文献

筛选
英文 中文
Electrically Pumped GeSn Micro-Ring Lasers 电泵浦 GeSn 微型环形激光器
IF 4.3 2区 工程技术
IEEE Journal of Selected Topics in Quantum Electronics Pub Date : 2024-10-31 DOI: 10.1109/JSTQE.2024.3489712
Teren Liu;Lukas Seidel;Omar Concepción;Vincent Reboud;Alexei Chelnokov;Giovanni Capellini;Michael Oehme;Detlev Grützmacher;Dan Buca
{"title":"Electrically Pumped GeSn Micro-Ring Lasers","authors":"Teren Liu;Lukas Seidel;Omar Concepción;Vincent Reboud;Alexei Chelnokov;Giovanni Capellini;Michael Oehme;Detlev Grützmacher;Dan Buca","doi":"10.1109/JSTQE.2024.3489712","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3489712","url":null,"abstract":"Recent progress in the quest for CMOS-integrable GeSn light sources comprises the optically-pumped laser operating at room temperature and the first demonstrations of electrically pumped lasers. In this work, the performance of electrically-pumped double heterostructure GeSn ring laser diodes are evaluated as a function of their geometry and pumping pulse time. In particular, the trade-off between the band structure, i.e., the directness of the GeSn band gap, and the device heat dissipation is discussed in terms of their impact on the emission intensity and threshold current density.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"31 1: SiGeSn Infrared Photon. and Quantum Electronics","pages":"1-7"},"PeriodicalIF":4.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Journal of Selected Topics in Quantum Electronics Topic Codes and Topics IEEE 量子电子学选题期刊》主题代码和主题
IF 4.3 2区 工程技术
IEEE Journal of Selected Topics in Quantum Electronics Pub Date : 2024-10-28 DOI: 10.1109/JSTQE.2024.3470357
{"title":"IEEE Journal of Selected Topics in Quantum Electronics Topic Codes and Topics","authors":"","doi":"10.1109/JSTQE.2024.3470357","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3470357","url":null,"abstract":"","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"30 5: Microresonator Frequency Comb Technologies","pages":"C4-C4"},"PeriodicalIF":4.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10736572","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Journal of Selected Topics in Quantum Electronics Publication Information IEEE 量子电子学选题期刊》出版信息
IF 4.3 2区 工程技术
IEEE Journal of Selected Topics in Quantum Electronics Pub Date : 2024-10-28 DOI: 10.1109/JSTQE.2024.3470351
{"title":"IEEE Journal of Selected Topics in Quantum Electronics Publication Information","authors":"","doi":"10.1109/JSTQE.2024.3470351","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3470351","url":null,"abstract":"","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"30 5: Microresonator Frequency Comb Technologies","pages":"C2-C2"},"PeriodicalIF":4.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10736526","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Journal of Selected Topics in Quantum Electronics Information for Authors IEEE 量子电子学选题期刊 作者须知
IF 4.3 2区 工程技术
IEEE Journal of Selected Topics in Quantum Electronics Pub Date : 2024-10-28 DOI: 10.1109/JSTQE.2024.3470355
{"title":"IEEE Journal of Selected Topics in Quantum Electronics Information for Authors","authors":"","doi":"10.1109/JSTQE.2024.3470355","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3470355","url":null,"abstract":"","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"30 5: Microresonator Frequency Comb Technologies","pages":"C3-C3"},"PeriodicalIF":4.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10736525","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial The Future of Microresonator Frequency Comb Technologies 社论 微谐振器频率梳技术的未来
IF 4.3 2区 工程技术
IEEE Journal of Selected Topics in Quantum Electronics Pub Date : 2024-10-25 DOI: 10.1109/JSTQE.2024.3482528
Lute Maleki
{"title":"Editorial The Future of Microresonator Frequency Comb Technologies","authors":"Lute Maleki","doi":"10.1109/JSTQE.2024.3482528","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3482528","url":null,"abstract":"","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"30 5: Microresonator Frequency Comb Technologies","pages":"1-3"},"PeriodicalIF":4.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10735259","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal Stability of the Dot-in-Well Gain Medium for Photonic Crystal Surface Emitting Lasers 用于光子晶体表面发射激光器的阱内点增益介质的热稳定性
IF 4.3 2区 工程技术
IEEE Journal of Selected Topics in Quantum Electronics Pub Date : 2024-10-25 DOI: 10.1109/JSTQE.2024.3486672
Subhashree Seth;Kevin J. Reilly;Fatih F. Ince;Akhil Kalapala;Chhabindra Gautam;Thomas J. Rotter;Alexander Neumann;Sadhvikas Addamane;Bradley Thompson;Ricky Gibson;Weidong Zhou;Ganesh Balakrishnan
{"title":"Thermal Stability of the Dot-in-Well Gain Medium for Photonic Crystal Surface Emitting Lasers","authors":"Subhashree Seth;Kevin J. Reilly;Fatih F. Ince;Akhil Kalapala;Chhabindra Gautam;Thomas J. Rotter;Alexander Neumann;Sadhvikas Addamane;Bradley Thompson;Ricky Gibson;Weidong Zhou;Ganesh Balakrishnan","doi":"10.1109/JSTQE.2024.3486672","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3486672","url":null,"abstract":"Self-assembled quantum dots (QDs) embedded in InGaAs quantum wells (QWs) are used as active regions for photonic-crystal surface-emitting lasers (PCSELs). An epitaxial regrowth method is developed to fabricate the dot-in-well (DWELL) PCSELs. The epitaxial regrowth starts with the growth of a partial laser structure containing bottom cladding, waveguide, active region, and the photonic crystal (PC) layer. The PC layer is patterned to realize the cavity. Subsequently a top cladding layer is regrown to complete the laser structure. During the regrowth of the top cladding layer, the partial laser structure is subjected to high growth temperatures in excess of 600 °C resulting in an unintentional annealing of the active region. This annealing of the active region can alter the QDs by changing their size resulting in a blue shift in photoluminescence (PL) and narrowing PL emission. This effect results in the misaligning of the gain peak and the cavity resonance, resulting in sub-optimal lasing performance. DWELL active regions are known to have better thermal stability compared to both QDs and QWs and could be an ideal candidate for regrown PCSELs. We successfully demonstrate an optically-pumped epitaxially-regrown DWELL PCSEL with an emission wavelength of 1230 nm operating at room temperature. Furthermore, the DWELL active region shows excellent emission wavelength stability and intensity despite the high temperature regrowth process.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"31 2: Pwr. and Effic. Scaling in Semiconductor Lasers","pages":"1-8"},"PeriodicalIF":4.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temperature-Dependent Dielectric Response, Index of Refraction, and Absorption Coefficient of GeSn Films up to 8.4% Sn 锡含量高达 8.4% 的 GeSn 薄膜随温度变化的介电响应、折射率和吸收系数
IF 4.3 2区 工程技术
IEEE Journal of Selected Topics in Quantum Electronics Pub Date : 2024-10-24 DOI: 10.1109/JSTQE.2024.3486025
Amanda N. Lemire;Kevin A. Grossklaus;Thomas E. Vandervelde
{"title":"Temperature-Dependent Dielectric Response, Index of Refraction, and Absorption Coefficient of GeSn Films up to 8.4% Sn","authors":"Amanda N. Lemire;Kevin A. Grossklaus;Thomas E. Vandervelde","doi":"10.1109/JSTQE.2024.3486025","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3486025","url":null,"abstract":"Three Ge\u0000<sub>(1-x)</sub>\u0000Sn\u0000<sub>x</sub>\u0000 films were measured by spectroscopic ellipsometry to extract their optical properties. The Sn contents of the films were 3.6%, 6.5%, and 8.4%, and all were fully strained to a Ge (001) substrate. Optical constants were collected from 0.39–4.116 eV, at temperatures between 78 K and 475 K. Critical point energies in the band structure were red-shifted with increasing Sn content and increasing temperatures. An extra critical point appears between E\u0000<sub>0</sub>\u0000+Δ and E\u0000<sub>1</sub>\u0000 transitions in GeSn samples that does not appear in Ge.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"31 1: SiGeSn Infrared Photon. and Quantum Electronics","pages":"1-5"},"PeriodicalIF":4.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Power and Efficiency Scaling of GaAs-Based Edge-Emitting High-Power Diode Lasers 基于砷化镓的边缘发光大功率二极管激光器的功率和效率扩展
IF 4.3 2区 工程技术
IEEE Journal of Selected Topics in Quantum Electronics Pub Date : 2024-10-24 DOI: 10.1109/JSTQE.2024.3484669
Paul Crump;Anisuzzaman Boni;Mohamed Elattar;S. K. Khamari;Igor P. Marko;Stephen J. Sweeney;Seval Arslan;Ben King;Md. Jarez Miah;Dominik Martin;Andrea Knigge;Pietro Della Casa;Günther Tränkle
{"title":"Power and Efficiency Scaling of GaAs-Based Edge-Emitting High-Power Diode Lasers","authors":"Paul Crump;Anisuzzaman Boni;Mohamed Elattar;S. K. Khamari;Igor P. Marko;Stephen J. Sweeney;Seval Arslan;Ben King;Md. Jarez Miah;Dominik Martin;Andrea Knigge;Pietro Della Casa;Günther Tränkle","doi":"10.1109/JSTQE.2024.3484669","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3484669","url":null,"abstract":"Current progress in the scaling of continuous wave optical output power and conversion efficiency of broad-area GaAs-based edge emitters, broad-area lasers (BALs), operating in the 900…1000 nm wavelength range is presented. Device research and engineering efforts have ensured that BALs remain the most efficient of all light sources, so that in the past 10 years, power conversion efficiency at 20 W continuous wave (CW) output power from BA lasers with a 90…100 μm wide stripe has increased 1.5-fold to 57% (via epitaxial layer design developments), whilst peak CW power per single emitter has increased around 3-fold to 70 W (via scaling of device size), with further scaling underway, for example via use of multi-junction designs. However, the peak achievable CW power conversion efficiency and CW specific output power (defined here as peak output power from a 100 μm stripe diode lasers with a single p-n junction) has changed remarkably little, remaining around 70% and 25 W, respectively, for the past decade. Fortunately, research to understand the limits to peak efficiency and specific output power has also shown progress. Specifically, recent studies indicate that spatial non-uniformity in optical field and temperature play a major role in limiting both power and conversion efficiency. Technological efforts motivated by these discoveries to flatten lateral and longitudinal temperature profiles have successfully increased both power and efficiency. In addition, epitaxial layer designs with very high modal gain successfully reduce threshold current and increase slope at 25 °C to values comparable to those observed at 200 K, offering a path toward the 80% conversion efficiency range currently seen only at these cryogenic temperatures. Overall, whilst operating efficiency and power continue to scale rapidly, a technological path for increased specific power and peak efficiency is also emerging.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"31 2: Pwr. and Effic. Scaling in Semiconductor Lasers","pages":"1-12"},"PeriodicalIF":4.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanostructured Semiconductor Lasers 纳米结构半导体激光器
IF 4.3 2区 工程技术
IEEE Journal of Selected Topics in Quantum Electronics Pub Date : 2024-10-21 DOI: 10.1109/JSTQE.2024.3483900
Jesper Mørk;Meng Xiong;Kristian Seegert;Mathias Marchal;Gaoneng Dong;Evangelos Dimopoulos;Elizaveta Semenova;Kresten Yvind;Yi Yu
{"title":"Nanostructured Semiconductor Lasers","authors":"Jesper Mørk;Meng Xiong;Kristian Seegert;Mathias Marchal;Gaoneng Dong;Evangelos Dimopoulos;Elizaveta Semenova;Kresten Yvind;Yi Yu","doi":"10.1109/JSTQE.2024.3483900","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3483900","url":null,"abstract":"Developments in semiconductor nanotechnology have allowed the experimental realization of a new generation of semiconductor lasers with cavity sizes on the scale of the optical wavelength or smaller. Such semiconductor nanolasers present new opportunities in information technology with extremely low energy consumption, e.g. for on-chip optical communications. As the characteristic dimensions of the laser shrink to the nanoscale, assumptions that hold well for macroscopic semiconductor lasers must be revisited. The paper presents recent progress on semiconductor nanolasers, specifically emphasizing three topics: photonic crystal nanolasers with ultra-low threshold, semiconductor lasers with deep subwavelength light confinement, and semiconductor Fano lasers.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"31 2: Pwr. and Effic. Scaling in Semiconductor Lasers","pages":"1-17"},"PeriodicalIF":4.3,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10723791","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Monolithic Germanium–Tin on Si Avalanche Photodiodes for Infrared Detection 开发用于红外探测的硅基单片锗锡雪崩光电二极管
IF 4.3 2区 工程技术
IEEE Journal of Selected Topics in Quantum Electronics Pub Date : 2024-10-16 DOI: 10.1109/JSTQE.2024.3482257
Justin Rudie;Sylvester Amoah;Xiaoxin Wang;Rajesh Kumar;Grey Abernathy;Steven Akwabli;Perry C. Grant;Jifeng Liu;Baohua Li;Wei Du;Shui-Qing Yu
{"title":"Development of Monolithic Germanium–Tin on Si Avalanche Photodiodes for Infrared Detection","authors":"Justin Rudie;Sylvester Amoah;Xiaoxin Wang;Rajesh Kumar;Grey Abernathy;Steven Akwabli;Perry C. Grant;Jifeng Liu;Baohua Li;Wei Du;Shui-Qing Yu","doi":"10.1109/JSTQE.2024.3482257","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3482257","url":null,"abstract":"We demonstrate monolithically grown germanium-tin (GeSn) on silicon avalanche photodiodes (APDs) for infrared light detection. A relatively thinner Ge buffer design was adopted to allow effective photo carriers to transport from the GeSn absorber to the Si multiplication layer such that clear punch-through behavior and a saturated primary responsivity of 0.3 A/W at 1550 nm were observed before avalanche breakdown in GeSn/Si APDs for the first time. The spectral response covers 1500 to 1700 nm. The measured punch-through and breakdown voltages are 15 and 17 V, respectively. Undisputed multiplication gain was obtained with the maximum value of 4.5 at 77 K, and 1.4 at 250 K, directly in reference to the saturated primary responsivity from the same device rather than a different GeSn p-i-n photodiode in previous reports. A peak responsivity was measured as 1.12 A/W at 1550 nm and 77 K.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"31 1: SiGeSn Infrared Photon. and Quantum Electronics","pages":"1-8"},"PeriodicalIF":4.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信