IEEE Journal of Selected Topics in Quantum Electronics最新文献

筛选
英文 中文
Editorial Interview: Recent Industrial Applications and Outlook of Hollow-Core Optical Fibers 编辑访谈:空心光纤的工业应用与展望
IF 4.3 2区 工程技术
IEEE Journal of Selected Topics in Quantum Electronics Pub Date : 2024-12-03 DOI: 10.1109/JSTQE.2024.3500232
Patrick Uebel
{"title":"Editorial Interview: Recent Industrial Applications and Outlook of Hollow-Core Optical Fibers","authors":"Patrick Uebel","doi":"10.1109/JSTQE.2024.3500232","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3500232","url":null,"abstract":"","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"30 6: Advances and Applications of Hollow-Core Fibers","pages":"1-3"},"PeriodicalIF":4.3,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10774075","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: Advances and Applications of Hollow-Core Fibers 社论:中空芯纤维的进展与应用
IF 4.3 2区 工程技术
IEEE Journal of Selected Topics in Quantum Electronics Pub Date : 2024-11-25 DOI: 10.1109/JSTQE.2024.3494952
Michael H. Frosz;Thomas D. Bradley;Md. Selim Habib;Christos Markos;John Travers;Yingying Wang
{"title":"Editorial: Advances and Applications of Hollow-Core Fibers","authors":"Michael H. Frosz;Thomas D. Bradley;Md. Selim Habib;Christos Markos;John Travers;Yingying Wang","doi":"10.1109/JSTQE.2024.3494952","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3494952","url":null,"abstract":"","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"30 6: Advances and Applications of Hollow-Core Fibers","pages":"1-1"},"PeriodicalIF":4.3,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10767107","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142713823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-Threshold Surface-Emitting Whispering-Gallery Mode Microlasers 低阈值表面发射啸叫-画廊模式微激光器
IF 4.3 2区 工程技术
IEEE Journal of Selected Topics in Quantum Electronics Pub Date : 2024-11-21 DOI: 10.1109/JSTQE.2024.3503724
Andrey Babichev;Ivan Makhov;Natalia Kryzhanovskaya;Sergey Troshkov;Yuriy Zadiranov;Yulia Salii;Marina Kulagina;Mikhail Bobrov;Alexey Vasil'ev;Sergey Blokhin;Nikolay Maleev;Leonid Karachinsky;Innokenty Novikov;Anton Egorov
{"title":"Low-Threshold Surface-Emitting Whispering-Gallery Mode Microlasers","authors":"Andrey Babichev;Ivan Makhov;Natalia Kryzhanovskaya;Sergey Troshkov;Yuriy Zadiranov;Yulia Salii;Marina Kulagina;Mikhail Bobrov;Alexey Vasil'ev;Sergey Blokhin;Nikolay Maleev;Leonid Karachinsky;Innokenty Novikov;Anton Egorov","doi":"10.1109/JSTQE.2024.3503724","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3503724","url":null,"abstract":"We report on microlasers based on high-quality micropillars with whispering-gallery modes lasing. The use of low-absorbing Al\u0000<sub>0.2</sub>\u0000Ga\u0000<sub>0.8</sub>\u0000As/Al\u0000<sub>0.9</sub>\u0000Ga\u0000<sub>0.1</sub>\u0000As distributed Bragg reflectors and smooth pillar sidewalls enables whispering-gallery modes lasing by excitation and collection of emission in the pillar axis direction. Simultaneous whispering gallery modes lasing (comb-like structure) is observed in the wavelength range of 930–970 nm for 3–7 μm pillar diameters. Increasing the temperature to 130 K leads to single-mode lasing for 5 μm pillars with a cold cavity quality-factor of about 8000 and an estimated threshold excitation power of 240 μW. Lasing in the thermoelectrical cooling range (up to 170 K) has been demonstrated.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"31 2: Pwr. and Effic. Scaling in Semiconductor Lasers","pages":"1-8"},"PeriodicalIF":4.3,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-Dimensional Coupled Wave Theory for Triangular Lattice TM-Polarised Photonic Crystal Surface Emitting Lasers 三角晶格tm偏振光子晶体表面发射激光器的二维耦合波理论
IF 4.3 2区 工程技术
IEEE Journal of Selected Topics in Quantum Electronics Pub Date : 2024-11-20 DOI: 10.1109/JSTQE.2024.3502794
Matthew N Robinson;Stephen John Sweeney;Richard A Hogg
{"title":"Two-Dimensional Coupled Wave Theory for Triangular Lattice TM-Polarised Photonic Crystal Surface Emitting Lasers","authors":"Matthew N Robinson;Stephen John Sweeney;Richard A Hogg","doi":"10.1109/JSTQE.2024.3502794","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3502794","url":null,"abstract":"This paper presents a coupled-wave analysis of triangular-lattice photonic crystal surface emitting lasers (PCSELs) with transverse magnetic polarization. Six plane waves coupled by Bragg diffraction describe the two-dimensional optical coupling. Resonant mode frequencies are calculated for a lattice of circular holes at various fill factors and compared to the plane-wave expansion method. Analytical equations for coupling constants and mode frequencies are derived, and mode degeneracy as a function of fill factor is examined. Comparison to a square lattice TM mode PCSEL shows improved in-plane 2D coupling. The general equations for arbitrary unit cell dielectric functions are discussed, with predictions of the lasing mode supported by finite device calculations.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"31 2: Pwr. and Effic. Scaling in Semiconductor Lasers","pages":"1-11"},"PeriodicalIF":4.3,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142777524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ambipolar Transport in Polycrystalline GeSn Transistors for Complementary Metal-Oxide-Semiconductor Applications 用于互补金属-氧化物-半导体应用的多晶 GeSn 晶体管中的常极性传输
IF 4.3 2区 工程技术
IEEE Journal of Selected Topics in Quantum Electronics Pub Date : 2024-11-19 DOI: 10.1109/JSTQE.2024.3499859
Priyanka Petluru;Christopher R. Allemang;Shang Liu;Jifeng Liu;Tzu-Ming Lu
{"title":"Ambipolar Transport in Polycrystalline GeSn Transistors for Complementary Metal-Oxide-Semiconductor Applications","authors":"Priyanka Petluru;Christopher R. Allemang;Shang Liu;Jifeng Liu;Tzu-Ming Lu","doi":"10.1109/JSTQE.2024.3499859","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3499859","url":null,"abstract":"Group-IV alloy GeSn is a promising material for electronic and optoelectronic applications due to its compatibility with both Si substrates and established Si fabrication processes. This study focuses on polycrystalline GeSn (10% Sn), which offers a cost-effective, large-area, and versatile alternative to epitaxial GeSn. We demonstrate ambipolar transport behavior in polycrystalline GeSn thin film transistors, achieving electron and hole field-effect mobilities reaching up to 0.05 cm\u0000<sup>2</sup>\u0000/Vs and 2.05 cm\u0000<sup>2</sup>\u0000/Vs, respectively. Through temperature-dependent analysis, we elucidate the underlying mechanism of this phenomenon, which we attribute to quantum tunneling between the Schottky barrier contact and the channel, as well as potential barriers between the grain boundaries of this polycrystalline film, thereby advancing the understanding of polycrystalline GeSn's electrical properties. This work highlights the potential of ambipolar transport as a technique to employ towards the development of GeSn complementary metal-oxide-semiconductor field-effect transistors, promising to simplify and reduce the cost of GeSn manufacturing processes for edge computing and sensing applications.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"31 1: SiGeSn Infrared Photon. and Quantum Electronics","pages":"1-6"},"PeriodicalIF":4.3,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142736530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of the Waveguide Integrated GeSn PDs on a SiN Platform in $2,mathrm{mu m}$ Wavelength Band 在 SiN 平台上设计波导集成式 GeSn PD(2,mathrm{mu m}$波段
IF 4.3 2区 工程技术
IEEE Journal of Selected Topics in Quantum Electronics Pub Date : 2024-11-08 DOI: 10.1109/JSTQE.2024.3493913
Mingming Li;Jun Zheng;Zhigang Song;Wanhua Zheng
{"title":"Design of the Waveguide Integrated GeSn PDs on a SiN Platform in $2,mathrm{mu m}$ Wavelength Band","authors":"Mingming Li;Jun Zheng;Zhigang Song;Wanhua Zheng","doi":"10.1109/JSTQE.2024.3493913","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3493913","url":null,"abstract":"Silicon Nitride (SiN) platform, as an integrated photonics platform compatible with CMOS technology, is increasingly competitive. However, active devices on SiN platform, such as 2\u0000<inline-formula><tex-math>$,mathrm{mu m}$</tex-math></inline-formula>\u0000 wavelength band photodetector(PD), remain relatively scarce. In this work, 2\u0000<inline-formula><tex-math>$,mathrm{mu m}$</tex-math></inline-formula>\u0000 wavelength band SiN waveguide GeSn PDs based on the SiN process platform were designed, including passive SiN waveguides, tapers, and GeSn PDs. The incident light's optical field propagating in the SiN waveguide couples downward into the GeSn absorption layer in the form of an evanescent wave, achieving efficient light transmission and absorption. The Maxwell's equations are solved using the finite difference method to obtain the field distribution of the electromagnetic components on the cross-section of the waveguide, determining the dimensions of the SiN waveguide and taper for single-mode transmission. Additionally, a taper structure gradually narrowing from the input end to the output end is employed to connect the waveguide above the active layer. This structure achieves a bandwidth of 75 GHz and a responsivity of 1 A/W at 2\u0000<inline-formula><tex-math>$,mathrm{mu m}$</tex-math></inline-formula>\u0000 for the Ge\u0000<inline-formula><tex-math>${_{0.86}}$</tex-math></inline-formula>\u0000Sn\u0000<inline-formula><tex-math>${_{0.14}}$</tex-math></inline-formula>\u0000 PD by simulation. The design of waveguide integrated GeSn PD on SiN platform provides meaningful guidance for the preparation of 2\u0000<inline-formula><tex-math>$,mathrm{mu m}$</tex-math></inline-formula>\u0000 wavelength band photonic integrated circuits (PIC).","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"31 1: SiGeSn Infrared Photon. and Quantum Electronics","pages":"1-7"},"PeriodicalIF":4.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lasing of Quantum-Dot Micropillar Lasers Under Elevated Temperatures 量子点微柱状激光器在高温下的激光蚀刻
IF 4.3 2区 工程技术
IEEE Journal of Selected Topics in Quantum Electronics Pub Date : 2024-11-08 DOI: 10.1109/JSTQE.2024.3494245
Andrey Babichev;Ivan Makhov;Natalia Kryzhanovskaya;Alexey Blokhin;Yuriy Zadiranov;Yulia Salii;Marina Kulagina;Mikhail Bobrov;Alexey Vasil'ev;Sergey Blokhin;Nikolay Maleev;Maria Tchernycheva;Leonid Karachinsky;Innokenty Novikov;Anton Egorov
{"title":"Lasing of Quantum-Dot Micropillar Lasers Under Elevated Temperatures","authors":"Andrey Babichev;Ivan Makhov;Natalia Kryzhanovskaya;Alexey Blokhin;Yuriy Zadiranov;Yulia Salii;Marina Kulagina;Mikhail Bobrov;Alexey Vasil'ev;Sergey Blokhin;Nikolay Maleev;Maria Tchernycheva;Leonid Karachinsky;Innokenty Novikov;Anton Egorov","doi":"10.1109/JSTQE.2024.3494245","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3494245","url":null,"abstract":"A comprehensive numerical modelling of microcavity parameters for micropillar lasers with optical pumping was presented. The structure with a hybrid dielectric-semiconductor top mirror has a significantly higher calculated quality-factor (∼65000 for 5 μm pillar) due to better vertical mode confinement. The minimum laser threshold (∼370 μW for 5 μm pillar) coincided with a temperature of 130 K, which is close to zero gain to cavity detuning. Lasing up to 220 K was demonstrated with a laser threshold of about 2.2 mW.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"31 5: Quantum Materials and Quantum Devices","pages":"1-8"},"PeriodicalIF":4.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simplified Designs of Ge1-ySny/Si(100) Diodes for Facile Integration With Si Technologies: Synthesis, Electrical Performance and Modeling Studies 便于与硅技术集成的 Ge1-ySny/Si(100) 二极管简化设计:合成、电气性能和建模研究
IF 4.3 2区 工程技术
IEEE Journal of Selected Topics in Quantum Electronics Pub Date : 2024-11-08 DOI: 10.1109/JSTQE.2024.3494541
Dhruve A. Ringwala;Matthew A. Mircovich;Manuel A. Roldan;John Kouvetakis;José Menéndez
{"title":"Simplified Designs of Ge1-ySny/Si(100) Diodes for Facile Integration With Si Technologies: Synthesis, Electrical Performance and Modeling Studies","authors":"Dhruve A. Ringwala;Matthew A. Mircovich;Manuel A. Roldan;John Kouvetakis;José Menéndez","doi":"10.1109/JSTQE.2024.3494541","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3494541","url":null,"abstract":"This paper describes the properties of \u0000<italic>pin</i>\u0000 Ge\u0000<sub>1-</sub>\u0000<italic><sub>y</sub></i>\u0000Sn\u0000<italic><sub>y</sub></i>\u0000 diodes (\u0000<italic>y</i>\u0000 = 4.4-10% Sn) grown directly on Si(100) wafers as a way to investigate the impact of eliminating the Ge buffer layers used conventionally for the integration of GeSn devices on Si. The technology offers a simplified and potentially lower-cost alternative for SWIR-LWIR applications. Two device designs are discussed. The first design adopts a layer sequence \u0000<italic>n</i>\u0000-Ge\u0000<sub>1-</sub>\u0000<italic><sub>y</sub></i>\u0000Sn\u0000<italic><sub>y</sub></i>\u0000/\u0000<italic>i</i>\u0000-Ge\u0000<sub>1-</sub>\u0000<italic><sub>y</sub></i>\u0000Sn\u0000<italic><sub>y</sub></i>\u0000/\u0000<italic>p</i>\u0000-Ge\u0000<sub>1-</sub>\u0000<italic><sub>y</sub></i>\u0000Sn\u0000<italic><sub>y</sub></i>\u0000/Si, featuring a single defected bottom interface between the \u0000<italic>p</i>\u0000 layer and the Si wafer. This was followed by an even simpler \u0000<italic>n</i>\u0000-Ge\u0000<sub>1-</sub>\u0000<italic><sub>y</sub></i>\u0000Sn\u0000<italic><sub>y</sub></i>\u0000/\u0000<italic>i</i>\u0000-Ge\u0000<sub>1-</sub>\u0000<italic><sub>y</sub></i>\u0000Sn\u0000<italic><sub>y</sub></i>\u0000 /\u0000<italic>p</i>\u0000-Si heterostructure design. In both cases, the top \u0000<italic>i</i>\u0000/\u0000<italic>n</i>\u0000 interface is pseudomorphic and potentially defect-free. The Ge\u0000<sub>1-y</sub>\u0000Sn\u0000<sub>y</sub>\u0000 layers are produced by CVD reactions of Ge\u0000<sub>3</sub>\u0000H\u0000<sub>8</sub>\u0000 and SnH\u0000<sub>4</sub>\u0000 at temperatures ranging from 290 °C to 300 °C. The \u0000<italic>n</i>\u0000-type electrodes in the samples were doped with As using As(SiH\u0000<sub>3</sub>\u0000)\u0000<sub>3</sub>\u0000, and the \u0000<italic>p</i>\u0000-type GeSn layers were doped using diborane as the source of B-atoms. All samples were characterized by XRD, RBS, IR-ellipsometry, AFM and TEM. The layers were found to be monocrystalline single-phase alloys exhibiting mostly relaxed strain states and top surfaces devoid of the cross-hatch surface patterns that are typical of Ge\u0000<sub>1-</sub>\u0000<italic><sub>y</sub></i>\u0000Sn\u0000<italic><sub>y</sub></i>\u0000 films grown on Ge buffers. Current-voltage \u0000<italic>I-V</i>\u0000 curves of fabricated devices over the 4.4-10% Sn range of interest showed that rectifying behavior is readily attained. It appears that the effect of eliminating the Ge-buffer is an increase of only one order magnitude in the density of defects responsible for the dark current, together with an increase in residual doping in the nominally intrinsic layer. The results suggest that these deleterious effects may be further reduced with improved sample designs, particularly at high Sn-concentrations, opening up new alternatives for the effective integration of GeSn- and Si technologies.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"31 1: SiGeSn Infrared Photon. and Quantum Electronics","pages":"1-10"},"PeriodicalIF":4.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142736364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Formal Scheme of Fault Injection on Coherent Integrated Photonic Neural Networks 相干集成光子神经网络的正式故障注入方案
IF 4.3 2区 工程技术
IEEE Journal of Selected Topics in Quantum Electronics Pub Date : 2024-11-07 DOI: 10.1109/JSTQE.2024.3493857
Ye Su;Xiao Jiang;Fang Xu;Yichen Ye;Zhuang Chen;Simi Lu;Weichen Liu;Yiyuan Xie
{"title":"A Formal Scheme of Fault Injection on Coherent Integrated Photonic Neural Networks","authors":"Ye Su;Xiao Jiang;Fang Xu;Yichen Ye;Zhuang Chen;Simi Lu;Weichen Liu;Yiyuan Xie","doi":"10.1109/JSTQE.2024.3493857","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3493857","url":null,"abstract":"Based on Mach-Zehnder interferometers (MZIs) coherent integrated photonic neural networks (PNNs) may provide a promising solution for the realization of deep learning with low power consumption, low latency, and ultra-high speed. Adversarial attacks have been widely confirmed to be a serious threat to deep learning. This has led to a large amount of studies in this direction of the electronic domain, including input attacks and inject faults for weights. In this paper, focusing on the phases in the linear operation unit of PNNs, a phase gradient attack (PGA) scheme based on the phase gradient sorting of the MZI-arrays and injecting disturbances along the gradient direction is proposed for the first time. The simulation results indicate that even with weak-intensity PGA, it is almost impossible for PNNs to perform the classification inference. Furthermore, taking into account the effects of fabrication-process variations (FPV) and thermal crosstalk in MZI-arrays that lead to tuning phase deviation in practical application, we systematically analyzed the validity of proposed scheme on the PNNs with phase uncertainties. Specifically, we tested the impact of injecting faults by compressing the number of attacked phase angles to 3, 5, and 7, respectively. The experiment results show that injection attack based using PGA on PNNs trained with Gaussian datasets would reduce classification accuracy to 27.97%, 15.47%, and 8.91% for corresponding cases.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"31 3: AI/ML Integrated Opto-electronics","pages":"1-11"},"PeriodicalIF":4.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum-Squeezing-Engineered Third-Order Kerr Nonlinearity and Optical High-Order Sideband Comb in a Composite Resonator-Atom System 复合谐振器-原子系统中的量子震荡工程三阶克尔非线性和光学高阶边带梳理
IF 4.3 2区 工程技术
IEEE Journal of Selected Topics in Quantum Electronics Pub Date : 2024-11-06 DOI: 10.1109/JSTQE.2024.3492261
Chang Gao;Fei-Fei Liu;Ze-Qiang Fan;Ling Fan;Ru Zhang;Cong Cao
{"title":"Quantum-Squeezing-Engineered Third-Order Kerr Nonlinearity and Optical High-Order Sideband Comb in a Composite Resonator-Atom System","authors":"Chang Gao;Fei-Fei Liu;Ze-Qiang Fan;Ling Fan;Ru Zhang;Cong Cao","doi":"10.1109/JSTQE.2024.3492261","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3492261","url":null,"abstract":"Optical microresonators can greatly enhance light-matter interactions and reduce the power necessary to observe nonlinear optical effects. Manipulation and application of atom-resonator-coupling-induced strong nonlinearity have received much attention in recent years. Here, we present a scheme to realize quantum-squeezing-engineered third-order Kerr nonlinearity and optical high-order sideband comb in a composite system consisting of a two-level atom and two directly coupled whispering-gallery-mode optical microresonators. By quantum squeezing one of two coupled resonator modes in this system, the effective resonator-resonator and atom-resonator coupling rates as well as the frequency of the squeezed resonator mode can be effectively controlled. Based on this mechanism, we show that the Kerr nonlinearity of the composite system can be effectively engineered by using the resonator-mode squeezing when the system is monochromatically driven beyond the weak-excitation limit. On the other hand, when the composite system is bichromatically driven, the optical high-order sideband combs formed in the transmission spectra of the system can also be effectively engineered by the resonator-mode squeezing. Therefore, our scheme provides a novel mechanism to control the physical properties of composite resonator-atom systems for various applications, and demonstrates that optical nonlinear effects induced by the atom-resonator coupling can be effectively engineered via quantum squeezing.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"31 5: Quantum Materials and Quantum Devices","pages":"1-12"},"PeriodicalIF":4.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142736402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信