{"title":"IEEE Journal of Selected Topics in Quantum Electronics Topic Codes and Topics","authors":"","doi":"10.1109/JSTQE.2024.3470357","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3470357","url":null,"abstract":"","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10736572","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Journal of Selected Topics in Quantum Electronics Publication Information","authors":"","doi":"10.1109/JSTQE.2024.3470351","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3470351","url":null,"abstract":"","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10736526","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Journal of Selected Topics in Quantum Electronics Information for Authors","authors":"","doi":"10.1109/JSTQE.2024.3470355","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3470355","url":null,"abstract":"","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10736525","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial The Future of Microresonator Frequency Comb Technologies","authors":"Lute Maleki","doi":"10.1109/JSTQE.2024.3482528","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3482528","url":null,"abstract":"","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10735259","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Subhashree Seth;Kevin J. Reilly;Fatih F. Ince;Akhil Kalapala;Chhabindra Gautam;Thomas J. Rotter;Alexander Neumann;Sadhvikas Addamane;Bradley Thompson;Ricky Gibson;Weidong Zhou;Ganesh Balakrishnan
{"title":"Thermal Stability of the Dot-in-Well Gain Medium for Photonic Crystal Surface Emitting Lasers","authors":"Subhashree Seth;Kevin J. Reilly;Fatih F. Ince;Akhil Kalapala;Chhabindra Gautam;Thomas J. Rotter;Alexander Neumann;Sadhvikas Addamane;Bradley Thompson;Ricky Gibson;Weidong Zhou;Ganesh Balakrishnan","doi":"10.1109/JSTQE.2024.3486672","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3486672","url":null,"abstract":"Self-assembled quantum dots (QDs) embedded in InGaAs quantum wells (QWs) are used as active regions for photonic-crystal surface-emitting lasers (PCSELs). An epitaxial regrowth method is developed to fabricate the dot-in-well (DWELL) PCSELs. The epitaxial regrowth starts with the growth of a partial laser structure containing bottom cladding, waveguide, active region, and the photonic crystal (PC) layer. The PC layer is patterned to realize the cavity. Subsequently a top cladding layer is regrown to complete the laser structure. During the regrowth of the top cladding layer, the partial laser structure is subjected to high growth temperatures in excess of 600 °C resulting in an unintentional annealing of the active region. This annealing of the active region can alter the QDs by changing their size resulting in a blue shift in photoluminescence (PL) and narrowing PL emission. This effect results in the misaligning of the gain peak and the cavity resonance, resulting in sub-optimal lasing performance. DWELL active regions are known to have better thermal stability compared to both QDs and QWs and could be an ideal candidate for regrown PCSELs. We successfully demonstrate an optically-pumped epitaxially-regrown DWELL PCSEL with an emission wavelength of 1230 nm operating at room temperature. Furthermore, the DWELL active region shows excellent emission wavelength stability and intensity despite the high temperature regrowth process.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paul Crump;Anisuzzaman Boni;Mohamed Elattar;S. K. Khamari;Igor P. Marko;Stephen J. Sweeney;Seval Arslan;Ben King;Md. Jarez Miah;Dominik Martin;Andrea Knigge;Pietro Della Casa;Günther Tränkle
{"title":"Power and Efficiency Scaling of GaAs-Based Edge-Emitting High-Power Diode Lasers","authors":"Paul Crump;Anisuzzaman Boni;Mohamed Elattar;S. K. Khamari;Igor P. Marko;Stephen J. Sweeney;Seval Arslan;Ben King;Md. Jarez Miah;Dominik Martin;Andrea Knigge;Pietro Della Casa;Günther Tränkle","doi":"10.1109/JSTQE.2024.3484669","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3484669","url":null,"abstract":"Current progress in the scaling of continuous wave optical output power and conversion efficiency of broad-area GaAs-based edge emitters, broad-area lasers (BALs), operating in the 900…1000 nm wavelength range is presented. Device research and engineering efforts have ensured that BALs remain the most efficient of all light sources, so that in the past 10 years, power conversion efficiency at 20 W continuous wave (CW) output power from BA lasers with a 90…100 μm wide stripe has increased 1.5-fold to 57% (via epitaxial layer design developments), whilst peak CW power per single emitter has increased around 3-fold to 70 W (via scaling of device size), with further scaling underway, for example via use of multi-junction designs. However, the peak achievable CW power conversion efficiency and CW specific output power (defined here as peak output power from a 100 μm stripe diode lasers with a single p-n junction) has changed remarkably little, remaining around 70% and 25 W, respectively, for the past decade. Fortunately, research to understand the limits to peak efficiency and specific output power has also shown progress. Specifically, recent studies indicate that spatial non-uniformity in optical field and temperature play a major role in limiting both power and conversion efficiency. Technological efforts motivated by these discoveries to flatten lateral and longitudinal temperature profiles have successfully increased both power and efficiency. In addition, epitaxial layer designs with very high modal gain successfully reduce threshold current and increase slope at 25 °C to values comparable to those observed at 200 K, offering a path toward the 80% conversion efficiency range currently seen only at these cryogenic temperatures. Overall, whilst operating efficiency and power continue to scale rapidly, a technological path for increased specific power and peak efficiency is also emerging.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of Monolithic Germanium–Tin on Si Avalanche Photodiodes for Infrared Detection","authors":"Justin Rudie;Sylvester Amoah;Xiaoxin Wang;Rajesh Kumar;Grey Abernathy;Steven Akwabli;Perry C. Grant;Jifeng Liu;Baohua Li;Wei Du;Shui-Qing Yu","doi":"10.1109/JSTQE.2024.3482257","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3482257","url":null,"abstract":"We demonstrate monolithically grown germanium-tin (GeSn) on silicon avalanche photodiodes (APDs) for infrared light detection. A relatively thinner Ge buffer design was adopted to allow effective photo carriers to transport from the GeSn absorber to the Si multiplication layer such that clear punch-through behavior and a saturated primary responsivity of 0.3 A/W at 1550 nm were observed before avalanche breakdown in GeSn/Si APDs for the first time. The spectral response covers 1500 to 1700 nm. The measured punch-through and breakdown voltages are 15 and 17 V, respectively. Undisputed multiplication gain was obtained with the maximum value of 4.5 at 77 K, and 1.4 at 250 K, directly in reference to the saturated primary responsivity from the same device rather than a different GeSn p-i-n photodiode in previous reports. A peak responsivity was measured as 1.12 A/W at 1550 nm and 77 K.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent Advances in Photonic Crystal Surface Emitting Lasers","authors":"Mingsen Pan;Chhabindra Gautam;Yudong Chen;Thomas Rotter;Ganesh Balakrishnan;Weidong Zhou","doi":"10.1109/JSTQE.2024.3481451","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3481451","url":null,"abstract":"In recent decades, photonic crystal surface-emitting lasers (PCSELs), a novel design of semiconductor light sources, have shown huge performance improvement. Based on compact semiconductor heterostructures, PCSELs have not only achieved near diffraction limit beam divergence but have also realized single-mode lasing from a broad emission area. Thanks to its planar cavity design, PCSEL cavities can integrate confinement structures laterally, which can potentially achieve performances otherwise unachievable in the current semiconductor lasers. This paper reviews recent advances in PCSELs, including the high-power PCSELs, laterally confined PCSEL design, PCSEL cavity size scaling for high speed, narrow laser linewidth, and coherent PCSEL arrays.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elaine D. McVay;Robert J. Deri;Salmaan H. Baxamusa;William E. Fenwick;Jiang Li;Joel B. Varley;Daniel E. Mittelberger;Luyang Wang;Kevin P. Pipe;Matthew C. Boisselle;Laina V. Gilmore;Rebecca B. Swertfeger;Mark T. Crowley;Prabhu Thiagarajan;Jiyon Song;Gerald T. Thaler;Christopher F. Schuck;Adam Dusty
{"title":"Aging Mechanisms of Broad Area ∼800 nm Laser Diodes","authors":"Elaine D. McVay;Robert J. Deri;Salmaan H. Baxamusa;William E. Fenwick;Jiang Li;Joel B. Varley;Daniel E. Mittelberger;Luyang Wang;Kevin P. Pipe;Matthew C. Boisselle;Laina V. Gilmore;Rebecca B. Swertfeger;Mark T. Crowley;Prabhu Thiagarajan;Jiyon Song;Gerald T. Thaler;Christopher F. Schuck;Adam Dusty","doi":"10.1109/JSTQE.2024.3466169","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3466169","url":null,"abstract":"This work presents a comprehensive study of early aging behavior (<500>15</sup>\u0000 cm\u0000<sup>−3</sup>\u0000 showed significantly longer delay before the onset of aging (incubation time) than devices with less than 1 × 10\u0000<sup>15</sup>\u0000 cm\u0000<sup>−3</sup>\u0000 oxygen. Generation-Recombination current and Laser Beam Induced Current measurements indicate that defect densities and aggregation are suppressed at the facets by oxygen, which can explain longer incubation times. Diagnostic data and parametric fits to diode simulation models show that increased cavity optical loss and defect density are primarily responsible for gradual power degradation during aging, rather than changes in nonradiative recombination. Mechanisms are proposed that explain this behavior, based on density functional theory (DFT) simulations and known recombination-enhanced defect generation phenomena.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performance Enhancement Reservoir Computing System Based on Combination of VCESL Optical Feedback and Mutual Injection Structure","authors":"Pengjin Zhu;Hongxiang Wang;Yuefeng Ji","doi":"10.1109/JSTQE.2024.3480455","DOIUrl":"https://doi.org/10.1109/JSTQE.2024.3480455","url":null,"abstract":"In this paper, a novel performance enhancement reservoir computing (RC) system based on the combination of vertical-cavity surface emitting laser (VCSEL) optical feedback and mutual injection (OFAI) structure is proposed and demonstrated numerically. By simultaneously introducing optical feedback and mutual injection structures into the proposed RC system, the nonlinear and high-dimensional mapping capabilities are significantly improved. The proposed system exhibits the best performance in both single task processing mode and parallel processing mode compared to the other 4 RC systems. Specifically, the minimum NMSE of Santa-Fe time series prediction, waveform classification and NARMA-10 task are 0.0011, 1.058\u0000<inline-formula><tex-math>$times 10^{-8}$</tex-math></inline-formula>\u0000 and 0.101 respectively. Furthermore, since two linear polarization modes coexist in VCSELs, the parallel-polarized and orthogonal-polarized configuration is considered. Numerical results show that in all benchmark tasks, the performance of the orthogonal-polarized configuration is generally better than the parallel-polarized configuration in single task processing mode, and the conclusion is opposite in parallel processing mode, which is related to the coupling mechanism between the two polarization modes. Finally, the effect of different parameters on the system performance is explored in detail. In summary, the proposed system is interesting and valuable in the field of high-speed and low-power neuromorphic photonics.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142517866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}