IEEE Photonics Technology Letters最新文献

筛选
英文 中文
Blank Page 空白页
IF 2.3 3区 工程技术
IEEE Photonics Technology Letters Pub Date : 2024-10-09 DOI: 10.1109/LPT.2024.3430629
{"title":"Blank Page","authors":"","doi":"10.1109/LPT.2024.3430629","DOIUrl":"https://doi.org/10.1109/LPT.2024.3430629","url":null,"abstract":"","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10712775","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Photonics Technology Letters publication information IEEE Photonics Technology Letters 出版信息
IF 2.3 3区 工程技术
IEEE Photonics Technology Letters Pub Date : 2024-10-09 DOI: 10.1109/LPT.2024.3455211
{"title":"IEEE Photonics Technology Letters publication information","authors":"","doi":"10.1109/LPT.2024.3455211","DOIUrl":"https://doi.org/10.1109/LPT.2024.3455211","url":null,"abstract":"","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10712739","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Photonics Technology Letters Information for Authors IEEE Photonics Technology Letters 为作者提供的信息
IF 2.3 3区 工程技术
IEEE Photonics Technology Letters Pub Date : 2024-10-09 DOI: 10.1109/LPT.2024.3455213
{"title":"IEEE Photonics Technology Letters Information for Authors","authors":"","doi":"10.1109/LPT.2024.3455213","DOIUrl":"https://doi.org/10.1109/LPT.2024.3455213","url":null,"abstract":"","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10712764","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Photonics Technology Letters publication information IEEE Photonics Technology Letters 出版信息
IF 2.3 3区 工程技术
IEEE Photonics Technology Letters Pub Date : 2024-10-09 DOI: 10.1109/LPT.2024.3430635
{"title":"IEEE Photonics Technology Letters publication information","authors":"","doi":"10.1109/LPT.2024.3430635","DOIUrl":"https://doi.org/10.1109/LPT.2024.3430635","url":null,"abstract":"","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10712776","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Photonics Technology Letters Information for Authors IEEE Photonics Technology Letters 为作者提供的信息
IF 2.3 3区 工程技术
IEEE Photonics Technology Letters Pub Date : 2024-10-09 DOI: 10.1109/LPT.2024.3440697
{"title":"IEEE Photonics Technology Letters Information for Authors","authors":"","doi":"10.1109/LPT.2024.3440697","DOIUrl":"https://doi.org/10.1109/LPT.2024.3440697","url":null,"abstract":"","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10712757","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perturbation-Based Joint SPM and XPM Compensation for Superchannel System 基于扰动的超信道系统 SPM 和 XPM 联合补偿
IF 2.3 3区 工程技术
IEEE Photonics Technology Letters Pub Date : 2024-10-04 DOI: 10.1109/LPT.2024.3474479
Zonglong He;Ali Mirani;Magnus Karlsson;Jochen Schröder
{"title":"Perturbation-Based Joint SPM and XPM Compensation for Superchannel System","authors":"Zonglong He;Ali Mirani;Magnus Karlsson;Jochen Schröder","doi":"10.1109/LPT.2024.3474479","DOIUrl":"https://doi.org/10.1109/LPT.2024.3474479","url":null,"abstract":"In contrast to digital backpropagation (DBP), perturbation-based nonlinear compensation (PB-NLC) is a low-complexity alternative to mitigate fiber Kerr nonlinearity. In this letter, we experimentally demonstrate a novel receiver-side perturbation approach to cancel the self-phase modulation and cross-phase modulation for superchannel systems using three independent receivers. With the inverse perturbation theory, we develop a nonlinear compensation model that does not require knowing the transmitted symbols and therefore avoids the penalty from the estimation error. We implement the PB-NLC in a \u0000<inline-formula> <tex-math>$3times 24.5$ </tex-math></inline-formula>\u0000 GBaud 64-QAM comb-based superchannel system spaced at 25 GHz. Compared to chromatic dispersion compensation, the full PB-NLC achieves a 0.2 dB Q2 factor gain after 1200 km transmission, which is equivalent to the single-channel DBP operating at 1 step per span.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142450897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Noise Suppression Method of Fiber Optic Sensors Driven by Broadband Light Source 宽带光源驱动光纤传感器的噪声抑制方法
IF 2.3 3区 工程技术
IEEE Photonics Technology Letters Pub Date : 2024-10-03 DOI: 10.1109/LPT.2024.3473535
Biying Zhou;Wenrui Wang;Jun Hu;Xueqian Bai;Ruoqi Wang;Haojie Wu;Xinglin Sun;Lingyun Ye;Kaichen Song
{"title":"Noise Suppression Method of Fiber Optic Sensors Driven by Broadband Light Source","authors":"Biying Zhou;Wenrui Wang;Jun Hu;Xueqian Bai;Ruoqi Wang;Haojie Wu;Xinglin Sun;Lingyun Ye;Kaichen Song","doi":"10.1109/LPT.2024.3473535","DOIUrl":"https://doi.org/10.1109/LPT.2024.3473535","url":null,"abstract":"Noise floor is an important metric for fiber optic sensors. In particular, common-mode noise (CMN) suppression is critical to improving the system’s ability to detect weak signals. In this letter, an innovative method for reducing noise in white-light-driven sensors is proposed. This structure fully utilizes the broad spectrum of white light and the wavelength selectivity of fiber gratings. The proposed CMN suppression method is capable of suppressing the phase noise of the light source, as well as the noise due to environmental disturbances. The experiments demonstrate that the noise floor of this vibration sensor is about -88 dB/Hz above 30Hz with 10km disturbed transmission fiber. The max 1/f noise reduction can reach approximately 60 dB near 5 Hz, while the max transmission path noise suppression exceeds 103 dB at hundreds of Hz. The proposed structure has the potential to achieve higher resolution in wavelength division multiplexing (WDM) sensor arrays without excessive cost.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142450893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Centroid Detection Using Optical Mask and Single Point Detector 使用光学掩膜和单点探测器进行中心点检测
IF 2.3 3区 工程技术
IEEE Photonics Technology Letters Pub Date : 2024-10-01 DOI: 10.1109/LPT.2024.3471772
Zhaocong Li;Xiaosong Wu;Linhai Huang;Naiting Gu
{"title":"Centroid Detection Using Optical Mask and Single Point Detector","authors":"Zhaocong Li;Xiaosong Wu;Linhai Huang;Naiting Gu","doi":"10.1109/LPT.2024.3471772","DOIUrl":"https://doi.org/10.1109/LPT.2024.3471772","url":null,"abstract":"In this letter, we report a high-frequency centroid sensor employing an optical mask with gradient-varying transmittance and a single point detector. In contrast to pixel array detectors, the centroid detection of this sensor is accomplished by a single point detector, which has higher sampling speed. We developed a mathematical model of optical mask-based centroid detection and verified its validity through simulation. Then, we built an experimental platform and realized high-accurate centroid detection. The experimental results indicate that the root-mean-square error (RMSE) is less than \u0000<inline-formula> <tex-math>$1.12~boldsymbol {mu }$ </tex-math></inline-formula>\u0000m, and the temporal sampling frequency is up to 500 kHz. Its high-frequency detection capability can serve as Malley probe in the field of aero optics, and other application scenarios that demand high detection frequency.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deterministic-Iterative Integrated Phase Retrieval 确定性-迭代综合相位检索
IF 2.3 3区 工程技术
IEEE Photonics Technology Letters Pub Date : 2024-09-30 DOI: 10.1109/LPT.2024.3470797
Jixin Jiang;Fanxing Li;Siyang Yu;Fan Yang;Jixiao Liu;Jian Wang;Wei Yan;Jialin Du
{"title":"Deterministic-Iterative Integrated Phase Retrieval","authors":"Jixin Jiang;Fanxing Li;Siyang Yu;Fan Yang;Jixiao Liu;Jian Wang;Wei Yan;Jialin Du","doi":"10.1109/LPT.2024.3470797","DOIUrl":"https://doi.org/10.1109/LPT.2024.3470797","url":null,"abstract":"In multi-plane phase retrieval imaging, the accuracy and efficiency of phase retrieval algorithm are usually mutually restrictive. Specifically, deterministic algorithms struggle to achieve sufficient accuracy, while iterative algorithms consume excessive time, thereby limiting their practical application. To address this issue, we propose a deterministic-iterative integrated phase retrieval algorithm, that is, an approximate phase, which could be quickly obtained by the deterministic algorithm, is imported as an initial value into the iterative algorithm to retrieve more accurate result efficiently. To demonstrate the effectiveness of this algorithm, we simulate its performance under various iterations and diffraction distances. Additionally, experiments are conducted using a pure-phase USAF1951 target and fixed mouse fibroblasts to verify its feasibility, high accuracy, and rapid iterative convergence speed. Integrating the deterministic and iterative algorithms, this method offers a novel approach for enhancing phase retrieval.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mode-Locked Optoelectronic Oscillator Based on a Dual-Optical-Electrical-Loop 基于双光电回路的模式锁定光电振荡器
IF 2.3 3区 工程技术
IEEE Photonics Technology Letters Pub Date : 2024-09-27 DOI: 10.1109/LPT.2024.3469277
Tongtong Xie;Yudong Wang;Xun Cai;Weiyu Dai;Hao Chen;Hongyan Fu
{"title":"Mode-Locked Optoelectronic Oscillator Based on a Dual-Optical-Electrical-Loop","authors":"Tongtong Xie;Yudong Wang;Xun Cai;Weiyu Dai;Hao Chen;Hongyan Fu","doi":"10.1109/LPT.2024.3469277","DOIUrl":"https://doi.org/10.1109/LPT.2024.3469277","url":null,"abstract":"A mode-locked optoelectronic oscillator (OEO) that generates microwave frequency combs (MFCs) based on a dual-optical-electrical-loop without external signal injection is proposed and experimentally demonstrated. An additional feedback loop with almost the same time delay as the primary loop produces a low-frequency microwave signal, which is coupled into the primary loop to lock the OEO’s mode. The experimental results show that the mode-locked fundamental and the 5th-order harmonic OEO with both repetition rates of 930 kHz are realized. Under the fundamental and 5th-order harmonic mode-locking states, the single-sideband (SSB) phase noise at 10 kHz frequency offset is measured to be −92.16 dBc/Hz and −102.22 dBc/Hz, respectively. Compared to the previously reported actively mode-locked OEO with an external injection signal, our scheme does not require external signal injection and the MFCs can be stably locked when the fiber (200m) in the loop is heated from 35°C-65°C, which can overcome the problems of modulated signals and mode spacing detuning in long-term operation with more flexible and universal characteristics.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信