Yan Song;Zhezheng Wang;Bingrui Sun;Bo Peng;Tiantao Hu;Zhiyao Zhang;Bao Sun;Yong Liu
{"title":"基于铌酸锂薄膜波导的紧凑、温度不敏感的光电场传感器","authors":"Yan Song;Zhezheng Wang;Bingrui Sun;Bo Peng;Tiantao Hu;Zhiyao Zhang;Bao Sun;Yong Liu","doi":"10.1109/LPT.2025.3583002","DOIUrl":null,"url":null,"abstract":"We propose a temperature-insensitive sensor using a compact X-cut thin-film lithium niobate (TFLN) Mach-Zehnder interferometer with quasi-symmetric arms (<inline-formula> <tex-math>$700\\times 900~\\mu $ </tex-math></inline-formula>m) and non-obstructive electrodes, suppressing thermal imbalance between waveguide arms. By optimizing the optical path difference and leveraging the low thermal expansion coefficient of silicon substrate, the sensor achieves intrinsic thermal stability without active tuning. Experimental results demonstrate 0.2 rad bias stability across <inline-formula> <tex-math>$0~^{\\circ } $ </tex-math></inline-formula>C to <inline-formula> <tex-math>$70~^{\\circ } $ </tex-math></inline-formula>C with <2 dB RF response error for fields spanning 250 MHz–3 GHz and 0 dBV/m–45 dBV/m.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"37 20","pages":"1153-1156"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Compact and Temperature-Insensitive Optical Electric Field Sensor Based on Thin-Film Lithium Niobate Waveguides\",\"authors\":\"Yan Song;Zhezheng Wang;Bingrui Sun;Bo Peng;Tiantao Hu;Zhiyao Zhang;Bao Sun;Yong Liu\",\"doi\":\"10.1109/LPT.2025.3583002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a temperature-insensitive sensor using a compact X-cut thin-film lithium niobate (TFLN) Mach-Zehnder interferometer with quasi-symmetric arms (<inline-formula> <tex-math>$700\\\\times 900~\\\\mu $ </tex-math></inline-formula>m) and non-obstructive electrodes, suppressing thermal imbalance between waveguide arms. By optimizing the optical path difference and leveraging the low thermal expansion coefficient of silicon substrate, the sensor achieves intrinsic thermal stability without active tuning. Experimental results demonstrate 0.2 rad bias stability across <inline-formula> <tex-math>$0~^{\\\\circ } $ </tex-math></inline-formula>C to <inline-formula> <tex-math>$70~^{\\\\circ } $ </tex-math></inline-formula>C with <2 dB RF response error for fields spanning 250 MHz–3 GHz and 0 dBV/m–45 dBV/m.\",\"PeriodicalId\":13065,\"journal\":{\"name\":\"IEEE Photonics Technology Letters\",\"volume\":\"37 20\",\"pages\":\"1153-1156\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Technology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11050399/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11050399/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Compact and Temperature-Insensitive Optical Electric Field Sensor Based on Thin-Film Lithium Niobate Waveguides
We propose a temperature-insensitive sensor using a compact X-cut thin-film lithium niobate (TFLN) Mach-Zehnder interferometer with quasi-symmetric arms ($700\times 900~\mu $ m) and non-obstructive electrodes, suppressing thermal imbalance between waveguide arms. By optimizing the optical path difference and leveraging the low thermal expansion coefficient of silicon substrate, the sensor achieves intrinsic thermal stability without active tuning. Experimental results demonstrate 0.2 rad bias stability across $0~^{\circ } $ C to $70~^{\circ } $ C with <2 dB RF response error for fields spanning 250 MHz–3 GHz and 0 dBV/m–45 dBV/m.
期刊介绍:
IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.