Gut MicrobesPub Date : 2025-12-01Epub Date: 2025-02-18DOI: 10.1080/19490976.2025.2468358
Flavio De Maio, Delia Mercedes Bianco, Giulia Santarelli, Roberto Rosato, Francesca Romana Monzo, Barbara Fiori, Maurizio Sanguinetti, Brunella Posteraro
{"title":"Profiling the gut microbiota to assess infection risk in <i>Klebsiella pneumoniae</i>-colonized patients.","authors":"Flavio De Maio, Delia Mercedes Bianco, Giulia Santarelli, Roberto Rosato, Francesca Romana Monzo, Barbara Fiori, Maurizio Sanguinetti, Brunella Posteraro","doi":"10.1080/19490976.2025.2468358","DOIUrl":"10.1080/19490976.2025.2468358","url":null,"abstract":"<p><p>Vornhagen et al. introduced a model combining gut microbiota structure and <i>Klebsiella pneumoniae</i> genotype to assess infection risk in <i>K. pneumoniae</i>-colonized patients. Building on their findings, we investigated the gut microbiota composition and <i>K. pneumoniae</i> genotype in 16 colonized patients, five of whom had bloodstream infections at the time of fecal sampling. Importantly, we did not apply the original machine learning model due to the small sample size of our cohort. Instead, we explored the distribution of key antimicrobial resistance and stress resistance genes and analyzed gut community structure based on amplicon sequence variants (ASVs) of the V3-V4 16S rRNA region. Notably, distinct gene profiles were observed in both infected and non-infected patients, and three patients without bloodstream infections showed no detectable <i>Klebsiella</i> ASVs despite microbiological confirmation of colonization. These findings highlight the need to integrate gut microbiota composition data into infection risk assessment and address limitations in taxonomic resolution and sample size. Future studies should aim to develop streamlined tools for clinical application in <i>K. pneumoniae</i>-colonized patients.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2468358"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11845061/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143440726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gut MicrobesPub Date : 2025-12-01Epub Date: 2025-03-04DOI: 10.1080/19490976.2025.2473522
Kun Jiang, Xinxin Pang, Weixun Li, Xiaoning Xu, Yan Yang, Chengbin Shang, Xiang Gao
{"title":"Interbacterial warfare in the human gut: insights from Bacteroidales' perspective.","authors":"Kun Jiang, Xinxin Pang, Weixun Li, Xiaoning Xu, Yan Yang, Chengbin Shang, Xiang Gao","doi":"10.1080/19490976.2025.2473522","DOIUrl":"10.1080/19490976.2025.2473522","url":null,"abstract":"<p><p>Competition and cooperation are fundamental to the stability and evolution of ecological communities. The human gut microbiota, a dense and complex microbial ecosystem, plays a critical role in the host's health and disease, with competitive interactions being particularly significant. As a dominant and extensively studied group in the human gut, Bacteroidales serves as a successful model system for understanding these intricate dynamic processes. This review summarizes recent advances in our understanding of the intricate antagonism mechanisms among gut Bacteroidales at the biochemical or molecular-genetic levels, focusing on interference and exploitation competition. We also discuss unresolved questions and suggest strategies for studying the competitive mechanisms of Bacteroidales. The review presented here offers valuable insights into the molecular basis of bacterial antagonism in the human gut and may inform strategies for manipulating the microbiome to benefit human health.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2473522"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901371/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143556597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gut MicrobesPub Date : 2025-12-01Epub Date: 2025-03-10DOI: 10.1080/19490976.2025.2477255
Daphne Moutsoglou, Pavithra Ramakrishnan, Byron P Vaughn
{"title":"Microbiota transplant therapy in inflammatory bowel disease: advances and mechanistic insights.","authors":"Daphne Moutsoglou, Pavithra Ramakrishnan, Byron P Vaughn","doi":"10.1080/19490976.2025.2477255","DOIUrl":"10.1080/19490976.2025.2477255","url":null,"abstract":"<p><p>Microbiota transplant therapy is an emerging therapy for inflammatory bowel disease, but factors influencing its efficacy and mechanism remain poorly understood. In this narrative review, we outline key elements affecting therapeutic outcomes, including donor factors (such as age and patient relationship), recipient factors, control selection, and elements impacting engraftment and its correlation with clinical response. We also examine potential mechanisms through inflammatory bowel disease trials, focusing on the interplay between the microbiota, host, and immune system. Finally, we briefly explore potential future directions for microbiota transplant therapy and promising emerging treatments.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2477255"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901402/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143585382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gut MicrobesPub Date : 2025-12-01Epub Date: 2025-03-27DOI: 10.1080/19490976.2025.2474149
Anne-Sophie Boucard, Saulius Kulakauskas, Jana Alazzaz, Soraya Chaouch, Mohamed Mammeri, Aaron Millan-Oropeza, Carine Machado, Céline Henry, Christine Péchoux, Holger Richly, Michael Gassel, Philippe Langella, Bruno Polack, Isabelle Florent, Luis G Bermúdez-Humarán
{"title":"Isolation of derivatives from the food-grade probiotic <i>Lactobacillus johnsonii</i> CNCM I-4884 with enhanced anti-<i>Giardia</i> activity.","authors":"Anne-Sophie Boucard, Saulius Kulakauskas, Jana Alazzaz, Soraya Chaouch, Mohamed Mammeri, Aaron Millan-Oropeza, Carine Machado, Céline Henry, Christine Péchoux, Holger Richly, Michael Gassel, Philippe Langella, Bruno Polack, Isabelle Florent, Luis G Bermúdez-Humarán","doi":"10.1080/19490976.2025.2474149","DOIUrl":"10.1080/19490976.2025.2474149","url":null,"abstract":"<p><p>Giardiasis, a widespread intestinal parasitosis affecting humans and animals, is a growing concern due to the emergence of drug-resistant strains of <i>G. intestinalis</i>. Probiotics offer a promising alternative for preventing and treating giardiasis. Recent studies have shown that the probiotic <i>Lactobacillus johnsonii</i> CNCM I-4884 inhibits <i>G. intestinalis</i> growth both <i>in vitro</i> and <i>in vivo</i>. This protective effect is largely mediated by bile salt hydrolase (BSH) enzymes, which convert conjugated bile acids (BAs) into free forms that are toxic to the parasite. The objective of this study was to use adaptive evolution to develop stress-resistant derivatives of <i>L. johnsonii</i> CNCM I-4884, with the aim of improving its anti-<i>Giardia</i> activity. Twelve derivatives with enhanced resistance to BAs and reduced autolysis were generated. Among them, derivative M11 exhibited the highest <i>in vitro</i> anti-<i>Giardia</i> effect with enhanced BSH activity. Genomic and proteomic analyses of M11 revealed two SNPs and the upregulation of the global stress response by SigB, which likely contributed to its increased BAs resistance and BSH overproduction. Finally, the anti-<i>Giardia</i> efficacy of M11 was validated in a murine model of giardiasis. In conclusion, our results demonstrate that adaptive evolution is an effective strategy to generate robust food-grade bacteria with improved health benefits.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2474149"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11951713/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143718794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gut MicrobesPub Date : 2025-12-01Epub Date: 2025-03-31DOI: 10.1080/19490976.2025.2481178
Elena Kurilovich, Naama Geva-Zatorsky
{"title":"Effects of bacteriophages on gut microbiome functionality.","authors":"Elena Kurilovich, Naama Geva-Zatorsky","doi":"10.1080/19490976.2025.2481178","DOIUrl":"10.1080/19490976.2025.2481178","url":null,"abstract":"<p><p>The gut microbiome, composed of bacteria, fungi, and viruses, plays a crucial role in maintaining the delicate balance of human health. Emerging evidence suggests that microbiome disruptions can have far-reaching implications, ranging from the development of inflammatory diseases and cancer to metabolic disorders. Bacteriophages, or \"phages\", are viruses that specifically infect bacterial cells, and their interactions with the gut microbiome are receiving increased attention. Despite the recently revived interest in the gut phageome, it is still considered the \"dark matter\" of the gut, with more than 80% of viral genomes remaining uncharacterized. Today, research is focused on understanding the mechanisms by which phages influence the gut microbiota and their potential applications. Bacteriophages may regulate the relative abundance of bacterial communities, affect bacterial functions in various ways, and modulate mammalian host immunity. This review explores how phages can regulate bacterial functionality, particularly in gut commensals and pathogens, emphasizing their role in gut health and disease.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2481178"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959909/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143752377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gut MicrobesPub Date : 2025-12-01Epub Date: 2024-12-22DOI: 10.1080/19490976.2024.2442526
Clara Valentin, Patricia Brito Rodrigues, Marko Verce, Sandrine Delbauve, Léa La Palombara, Florine Demaret, Justine Allard, Isabelle Salmon, Patrice D Cani, Arnaud Köhler, Amandine Everard, Véronique Flamand
{"title":"Maternal probiotic exposure enhances CD8 T cell protective neonatal immunity and modulates offspring metabolome to control influenza virus infection.","authors":"Clara Valentin, Patricia Brito Rodrigues, Marko Verce, Sandrine Delbauve, Léa La Palombara, Florine Demaret, Justine Allard, Isabelle Salmon, Patrice D Cani, Arnaud Köhler, Amandine Everard, Véronique Flamand","doi":"10.1080/19490976.2024.2442526","DOIUrl":"https://doi.org/10.1080/19490976.2024.2442526","url":null,"abstract":"<p><p>Maternal gut microbiota composition contributes to the status of the neonatal immune system and could influence the early life higher susceptibility to viral respiratory infections. Using a novel protocol of murine maternal probiotic supplementation, we report that perinatal exposure to <i>Lacticaseibacillus rhamnosus</i> (<i>L.rh</i>) or <i>Bifidobacterium animalis subsp. lactis</i> (<i>B.lac</i>) increases the influenza A/PR8 virus (IAV) clearance in neonates. Following either supplementation, type 1 conventional dendritic cells (cDC1) were amplified in the lymph nodes leading to an enhanced IAV antigen-experienced IFN-γ producing effector CD8 T cells in neonates and IAV-specific resident memory CD8 T cells in adulthood. This was compatible with a higher protection of the offspring upon a secondary infection. Interestingly, only mice born to <i>L.rh</i> supplemented mothers further displayed an increased activation of IFN-γ producing virtual memory CD8 T cells and a production of IL-10 by CD4 and CD8 T cells that could explain a better control of the lung damages upon infection. In the offspring and the mothers, no disturbance of the gut microbiota was observed but, as analyzed through an untargeted metabolomic approach, both exposures modified neonatal plasma metabolites. Among them, we further demonstrated that genistein and 3-(3-hydroxyphenyl)propionic acid recapitulate viral clearance or cDC1 activation in neonates exposed to IAV. We conclude that maternal <i>L.rh</i> or <i>B.lac</i> supplementation confers the neonates specific metabolomic modulations with a better CD8 T cell-mediated immune protection against IAV infection.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2442526"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142876910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gut MicrobesPub Date : 2025-12-01Epub Date: 2024-12-18DOI: 10.1080/19490976.2024.2440120
Madison Moore, Hunter D Whittington, Rebecca Knickmeyer, M Andrea Azcarate-Peril, Jose M Bruno-Bárcena
{"title":"Non-stochastic reassembly of a metabolically cohesive gut consortium shaped by N-acetyl-lactosamine-enriched fibers.","authors":"Madison Moore, Hunter D Whittington, Rebecca Knickmeyer, M Andrea Azcarate-Peril, Jose M Bruno-Bárcena","doi":"10.1080/19490976.2024.2440120","DOIUrl":"10.1080/19490976.2024.2440120","url":null,"abstract":"<p><p>Diet is one of the main factors shaping the human microbiome, yet our understanding of how specific dietary components influence microbial consortia assembly and subsequent stability in response to press disturbances - such as increasing resource availability (feeding rate) - is still incomplete. This study explores the reproducible re-assembly, metabolic interplay, and compositional stability within microbial consortia derived from pooled stool samples of three healthy infants. Using a single-step packed-bed reactor (PBR) system, we assessed the reassembly and metabolic output of consortia exposed to lactose, glucose, galacto-oligosaccharides (GOS), and humanized GOS (hGOS). Our findings reveal that complex carbohydrates, especially those containing low inclusion (~1.25 gL<sup>-1</sup>) components present in human milk, such as N-acetyl-lactosamine (LacNAc), promote taxonomic, and metabolic stability under varying feeding rates, as shown by diversity metrics and network analysis. Targeted metabolomics highlighted distinct metabolic responses to different carbohydrates: GOS was linked to increased lactate, lactose to propionate, sucrose to butyrate, and CO<sub>2</sub>, and the introduction of bile salts with GOS or hGOS resulted in butyrate reduction and increased hydrogen production. This study validates the use of single-step PBRs for reliably studying microbial consortium stability and functionality in response to nutritional press disturbances, offering insights into the dietary modulation of microbial consortia and their ecological dynamics.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2440120"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11660306/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142853944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gut MicrobesPub Date : 2025-12-01Epub Date: 2025-01-21DOI: 10.1080/19490976.2025.2452241
Jin Ye, Renjie Shi, Xiaoning Wu, Hua Fan, Yapei Zhao, Xinyun Hu, Lulu Wang, Xiaowei Bo, Dongning Li, Yunshu Ge, Danna Wang, Bing Xia, Zhenting Zhao, Chunxia Xiao, Beita Zhao, Yutang Wang, Xuebo Liu
{"title":"Stevioside mitigates metabolic dysregulation in offspring induced by maternal high-fat diet: the role of gut microbiota-driven thermogenesis.","authors":"Jin Ye, Renjie Shi, Xiaoning Wu, Hua Fan, Yapei Zhao, Xinyun Hu, Lulu Wang, Xiaowei Bo, Dongning Li, Yunshu Ge, Danna Wang, Bing Xia, Zhenting Zhao, Chunxia Xiao, Beita Zhao, Yutang Wang, Xuebo Liu","doi":"10.1080/19490976.2025.2452241","DOIUrl":"https://doi.org/10.1080/19490976.2025.2452241","url":null,"abstract":"<p><p>Maternal obesity poses a significant threat to the metabolic profiles of offspring. Microorganisms acquired from the mother early in life critically affect the host's metabolic functions. Natural non-nutritive sweeteners, particularly stevioside (STV), play a crucial role in reducing obesity and affecting gut microbiota composition. Based on this, we hypothesized that maternal STV supplementation could improve the health of mothers and offspring by altering their gut microbiota. Our study found that maternal STV supplementation reduced obesity during pregnancy, decreased abnormal lipid accumulation in offspring mice caused by maternal obesity, and modified the gut microbiota of both dams and offspring, notably increasing the abundance of <i>Lactobacillus apodemi</i> (<i>L. apodemi</i>). Co-housing and fecal microbiota transplant experiments confirmed that gut microbiota mediated the effects of STV on metabolic disorders. Furthermore, treatment with <i>L. apodemi</i> alone replicated the beneficial effects of STV, which were associated with increased thermogenesis. In summary, maternal STV supplementation could alleviate lipid metabolic disorders in offspring by enhancing <i>L. apodemi</i> levels and promoting thermogenic activity, potentially involving changes in bile acid metabolism pathways.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2452241"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143004538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gut MicrobesPub Date : 2025-12-01Epub Date: 2025-02-09DOI: 10.1080/19490976.2025.2464225
Xinwei Li, Xia Xiao, Shengnan Wang, Biyu Wu, Yixuan Zhou, Pan Deng
{"title":"Uncovering <i>de novo</i> polyamine biosynthesis in the gut microbiome and its alteration in inflammatory bowel disease.","authors":"Xinwei Li, Xia Xiao, Shengnan Wang, Biyu Wu, Yixuan Zhou, Pan Deng","doi":"10.1080/19490976.2025.2464225","DOIUrl":"10.1080/19490976.2025.2464225","url":null,"abstract":"<p><p>Polyamines are important gut microbial metabolites known to affect host physiology, yet the mechanisms behind their microbial production remain incompletely understood. In this study, we developed a stable isotope-resolved metabolomic (SIRM) approach to track polyamine biosynthesis in the gut microbiome. Viable microbial cells were extracted from fresh human and mouse feces and incubated anaerobically with [U-<sup>13</sup>C]-labeled inulin (tracer). Liquid chromatography-high resolution mass spectrometry analysis revealed distinct <sup>13</sup>C enrichment profiles for spermidine (SPD) and putrescine (PUT), indicating that the arginine-agmatine-SPD pathway contributes to SPD biosynthesis in addition to the well-known spermidine synthase pathway (PUT aminopropylation). Species differences were observed in the <sup>13</sup>C enrichments of polyamines and related metabolites between the human and mouse microbiome. By analyzing the fecal metabolomics and metatranscriptomic data from an inflammatory bowel disease (IBD) cohort, we found significantly higher polyamine levels in IBD patients compared to healthy controls. Further investigations using single-strain SIRM and <i>in silico</i> analyses identified <i>Bacteroides</i> spp. as key contributors to polyamine biosynthesis, harboring essential genes for this process and potentially driving the upregulation of polyamines in IBD. Taken together, this study expands our understanding of polyamine biosynthesis in the gut microbiome and will facilitate the development of precision therapies to target polyamine-associated diseases.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2464225"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11812404/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143382299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}