Matthieu Minty, Alberic Germain, Jiuwen Sun, Gracia Kaglan, Florence Servant, Benjamin Lelouvier, Emiri Misselis, Radu Mircea Neagoe, Menghini Rossella, Marina Cardellini, Rémy Burcelin, Massimo Federici, José Manuel Fernandez-Real, Vincent Blasco-Baque
{"title":"确定肥胖患者预测体重减轻的位置依赖性脂肪组织细菌DNA特征。","authors":"Matthieu Minty, Alberic Germain, Jiuwen Sun, Gracia Kaglan, Florence Servant, Benjamin Lelouvier, Emiri Misselis, Radu Mircea Neagoe, Menghini Rossella, Marina Cardellini, Rémy Burcelin, Massimo Federici, José Manuel Fernandez-Real, Vincent Blasco-Baque","doi":"10.1080/19490976.2024.2439105","DOIUrl":null,"url":null,"abstract":"<p><p>Recent sets of evidence have described profiles of 16S rDNA sequences in host tissues, notably in fat pads that are significantly overrepresented and can serve as signatures of metabolic disease. However, these recent and original observations need to be further detailed and functionally defined. Here, using state-of-the-art targeted DNA sequencing and discriminant predictive approaches, we describe, from the longitudinal FLORINASH cohort of patients who underwent bariatric surgery, visceral, and subcutaneous fat pad-specific bacterial 16SrRNA signatures. The corresponding <i>Porphyromonadaceae</i>, <i>Campylobacteraceae</i>, <i>Prevotellaceae</i>, <i>Actimomycetaceae</i>, <i>Veillonellaceae</i>, <i>Anaerivoracaceae</i>, <i>Fusobacteriaceae</i>, and the <i>Clostridium family XI</i> 16SrRNA DNA segment profiles are signatures of the subcutaneous adipose depot while <i>Pseudomonadaceae</i> and <i>Micrococcacecae</i>, 16SrRNA DNA sequence profiles characterize the visceral adipose depot. In addition, we have further identified that a specific pre-bariatric surgery adipose tissue bacterial DNA signature predicts the efficacy of body weight loss in obese patients 5-10 years after the surgery. 16SrRNA signatures discriminate (ROC ~ 1) the patients who did not maintain bodyweight loss and those who did. Second, from the 16SrRNA sequences we infer potential pathways suggestive of catabolic biochemical activities that could be signatures of subcutaneous adipose depots that predict body weight loss.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2439105"},"PeriodicalIF":12.2000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying the location-dependent adipose tissue bacterial DNA signatures in obese patients that predict body weight loss.\",\"authors\":\"Matthieu Minty, Alberic Germain, Jiuwen Sun, Gracia Kaglan, Florence Servant, Benjamin Lelouvier, Emiri Misselis, Radu Mircea Neagoe, Menghini Rossella, Marina Cardellini, Rémy Burcelin, Massimo Federici, José Manuel Fernandez-Real, Vincent Blasco-Baque\",\"doi\":\"10.1080/19490976.2024.2439105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent sets of evidence have described profiles of 16S rDNA sequences in host tissues, notably in fat pads that are significantly overrepresented and can serve as signatures of metabolic disease. However, these recent and original observations need to be further detailed and functionally defined. Here, using state-of-the-art targeted DNA sequencing and discriminant predictive approaches, we describe, from the longitudinal FLORINASH cohort of patients who underwent bariatric surgery, visceral, and subcutaneous fat pad-specific bacterial 16SrRNA signatures. The corresponding <i>Porphyromonadaceae</i>, <i>Campylobacteraceae</i>, <i>Prevotellaceae</i>, <i>Actimomycetaceae</i>, <i>Veillonellaceae</i>, <i>Anaerivoracaceae</i>, <i>Fusobacteriaceae</i>, and the <i>Clostridium family XI</i> 16SrRNA DNA segment profiles are signatures of the subcutaneous adipose depot while <i>Pseudomonadaceae</i> and <i>Micrococcacecae</i>, 16SrRNA DNA sequence profiles characterize the visceral adipose depot. In addition, we have further identified that a specific pre-bariatric surgery adipose tissue bacterial DNA signature predicts the efficacy of body weight loss in obese patients 5-10 years after the surgery. 16SrRNA signatures discriminate (ROC ~ 1) the patients who did not maintain bodyweight loss and those who did. Second, from the 16SrRNA sequences we infer potential pathways suggestive of catabolic biochemical activities that could be signatures of subcutaneous adipose depots that predict body weight loss.</p>\",\"PeriodicalId\":12909,\"journal\":{\"name\":\"Gut Microbes\",\"volume\":\"17 1\",\"pages\":\"2439105\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gut Microbes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/19490976.2024.2439105\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut Microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19490976.2024.2439105","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
最近的一系列证据描述了宿主组织中16S rDNA序列的概况,特别是在脂肪垫中,脂肪垫的代表性明显过高,可以作为代谢性疾病的标志。然而,这些最近和原始的观察结果需要进一步详细和功能定义。在这里,我们使用最先进的靶向DNA测序和判别预测方法,从纵向FLORINASH队列中描述了接受减肥手术的患者,内脏和皮下脂肪垫特异性细菌16SrRNA特征。Porphyromonadaceae、Campylobacteraceae、Prevotellaceae、Actimomycetaceae、Veillonellaceae、Anaerivoracaceae、Fusobacteriaceae和Clostridium family XI 16SrRNA DNA序列是皮下脂肪库的特征,而Pseudomonadaceae和Micrococcacecae的16SrRNA DNA序列是内脏脂肪库的特征。此外,我们进一步确定了一种特定的减肥手术前脂肪组织细菌DNA标记可以预测手术后5-10年肥胖患者的体重减轻效果。16SrRNA特征区分(ROC ~ 1)未维持体重减轻和维持体重减轻的患者。其次,从16SrRNA序列中,我们推断出可能提示分解代谢生化活动的潜在途径,这些途径可能是预测体重减轻的皮下脂肪库的标志。
Identifying the location-dependent adipose tissue bacterial DNA signatures in obese patients that predict body weight loss.
Recent sets of evidence have described profiles of 16S rDNA sequences in host tissues, notably in fat pads that are significantly overrepresented and can serve as signatures of metabolic disease. However, these recent and original observations need to be further detailed and functionally defined. Here, using state-of-the-art targeted DNA sequencing and discriminant predictive approaches, we describe, from the longitudinal FLORINASH cohort of patients who underwent bariatric surgery, visceral, and subcutaneous fat pad-specific bacterial 16SrRNA signatures. The corresponding Porphyromonadaceae, Campylobacteraceae, Prevotellaceae, Actimomycetaceae, Veillonellaceae, Anaerivoracaceae, Fusobacteriaceae, and the Clostridium family XI 16SrRNA DNA segment profiles are signatures of the subcutaneous adipose depot while Pseudomonadaceae and Micrococcacecae, 16SrRNA DNA sequence profiles characterize the visceral adipose depot. In addition, we have further identified that a specific pre-bariatric surgery adipose tissue bacterial DNA signature predicts the efficacy of body weight loss in obese patients 5-10 years after the surgery. 16SrRNA signatures discriminate (ROC ~ 1) the patients who did not maintain bodyweight loss and those who did. Second, from the 16SrRNA sequences we infer potential pathways suggestive of catabolic biochemical activities that could be signatures of subcutaneous adipose depots that predict body weight loss.
期刊介绍:
The intestinal microbiota plays a crucial role in human physiology, influencing various aspects of health and disease such as nutrition, obesity, brain function, allergic responses, immunity, inflammatory bowel disease, irritable bowel syndrome, cancer development, cardiac disease, liver disease, and more.
Gut Microbes serves as a platform for showcasing and discussing state-of-the-art research related to the microorganisms present in the intestine. The journal emphasizes mechanistic and cause-and-effect studies. Additionally, it has a counterpart, Gut Microbes Reports, which places a greater focus on emerging topics and comparative and incremental studies.