Reutericyclin, a specialized metabolite of Limosilactobacillus reuteri, mitigates risperidone-induced weight gain in mice.

IF 12.2 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Gut Microbes Pub Date : 2025-12-01 Epub Date: 2025-04-07 DOI:10.1080/19490976.2025.2477819
Fatima A Aboulalazm, Alexis B Kazen, Orlando deLeon, Susanne Müller, Fatima L Saravia, Valery Lozada-Fernandez, Matthew A Hadiono, Robert F Keyes, Brian C Smith, Stephanie L Kellogg, Justin L Grobe, Tammy L Kindel, John R Kirby
{"title":"Reutericyclin, a specialized metabolite of <i>Limosilactobacillus reuteri</i>, mitigates risperidone-induced weight gain in mice.","authors":"Fatima A Aboulalazm, Alexis B Kazen, Orlando deLeon, Susanne Müller, Fatima L Saravia, Valery Lozada-Fernandez, Matthew A Hadiono, Robert F Keyes, Brian C Smith, Stephanie L Kellogg, Justin L Grobe, Tammy L Kindel, John R Kirby","doi":"10.1080/19490976.2025.2477819","DOIUrl":null,"url":null,"abstract":"<p><p>The role of xenobiotic disruption of microbiota, corresponding dysbiosis, and potential links to host metabolic diseases are of critical importance. In this study, we used a widely prescribed antipsychotic drug, risperidone, known to influence weight gain in humans, to induce weight gain in C57BL/6J female mice. We hypothesized that microbes essential for maintaining gut homeostasis and energy balance would be depleted following treatment with risperidone, leading to enhanced weight gain relative to controls. Thus, we performed metagenomic analyses on stool samples to identify microbes that were excluded in risperidone-treated animals but remained present in controls. We identified multiple taxa including <i>Limosilactobacillus reuteri</i> as a candidate for further study. Oral supplementation with <i>L. reuteri</i> protected against risperidone-induced weight gain (RIWG) and was dependent on cellular production of a specialized metabolite, reutericyclin. Further, synthetic reutericyclin was sufficient to mitigate RIWG. Both synthetic reutericyclin and <i>L. reuteri</i> restored energy balance in the presence of risperidone to mitigate excess weight gain and induce shifts in the microbiome associated with leanness. In total, our results identify reutericyclin production by <i>L. reuteri</i> as a potential probiotic to restore energy balance induced by risperidone and to promote leanness.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2477819"},"PeriodicalIF":12.2000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut Microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19490976.2025.2477819","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The role of xenobiotic disruption of microbiota, corresponding dysbiosis, and potential links to host metabolic diseases are of critical importance. In this study, we used a widely prescribed antipsychotic drug, risperidone, known to influence weight gain in humans, to induce weight gain in C57BL/6J female mice. We hypothesized that microbes essential for maintaining gut homeostasis and energy balance would be depleted following treatment with risperidone, leading to enhanced weight gain relative to controls. Thus, we performed metagenomic analyses on stool samples to identify microbes that were excluded in risperidone-treated animals but remained present in controls. We identified multiple taxa including Limosilactobacillus reuteri as a candidate for further study. Oral supplementation with L. reuteri protected against risperidone-induced weight gain (RIWG) and was dependent on cellular production of a specialized metabolite, reutericyclin. Further, synthetic reutericyclin was sufficient to mitigate RIWG. Both synthetic reutericyclin and L. reuteri restored energy balance in the presence of risperidone to mitigate excess weight gain and induce shifts in the microbiome associated with leanness. In total, our results identify reutericyclin production by L. reuteri as a potential probiotic to restore energy balance induced by risperidone and to promote leanness.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Gut Microbes
Gut Microbes Medicine-Microbiology (medical)
CiteScore
18.20
自引率
3.30%
发文量
196
审稿时长
10 weeks
期刊介绍: The intestinal microbiota plays a crucial role in human physiology, influencing various aspects of health and disease such as nutrition, obesity, brain function, allergic responses, immunity, inflammatory bowel disease, irritable bowel syndrome, cancer development, cardiac disease, liver disease, and more. Gut Microbes serves as a platform for showcasing and discussing state-of-the-art research related to the microorganisms present in the intestine. The journal emphasizes mechanistic and cause-and-effect studies. Additionally, it has a counterpart, Gut Microbes Reports, which places a greater focus on emerging topics and comparative and incremental studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信