Gut MicrobesPub Date : 2024-10-22DOI: 10.1080/19490976.2024.2418412
Maria Lucia Orsini Delgado,Joao Gamelas Magalhaes,Rachel Morra,Antonietta Cultrone
{"title":"Muropeptides and muropeptide transporters impact on host immune response.","authors":"Maria Lucia Orsini Delgado,Joao Gamelas Magalhaes,Rachel Morra,Antonietta Cultrone","doi":"10.1080/19490976.2024.2418412","DOIUrl":"https://doi.org/10.1080/19490976.2024.2418412","url":null,"abstract":"In bacteria, the cell envelope is the key element surrounding and protecting the bacterial content from mechanical or osmotic damages. It allows the selective interchanges of solutes, ions, cellular debris, and drugs between the cellular compartments and the external environment, thanks to the presence of transmembrane proteins called transporters. The major component of the cell envelope is the peptidoglycan, consisting of long linear glycan strands cross-linked by short peptide stems. During cell growth or under stress conditions, peptidoglycan fragments, the muropeptides, are released by bacteria and recognized by the host Pattern Recognition Receptor, promoting the activation of their innate defense mechanisms. The review sums up the salient aspects of microbiota-host interaction with a focus on the NOD-dependent immune response to bacterial peptidoglycan and on the accountability of muropeptide transporters in the crosstalk with the host and in antibiotic resistance. Furthermore, it retraces the discoveries and applications of microorganisms-derived components such as vaccines or vaccine adjuvants.","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"5 1","pages":"2418412"},"PeriodicalIF":12.2,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gut MicrobesPub Date : 2024-10-20DOI: 10.1080/19490976.2024.2413372
Xiao Han, Joannie M. Allaire, Shauna M. Crowley, Jocelyn J. Chan, Kelly Lau, Conghao Zhang, Simon A. Hirota, Kirk Bergstrom, Leigh A. Knodler, Bruce A. Vallance
{"title":"Inflammasome activation links enteric Salmonella Typhimurium infection to a rapid, cytokine-dependent increase in intestinal mucin release","authors":"Xiao Han, Joannie M. Allaire, Shauna M. Crowley, Jocelyn J. Chan, Kelly Lau, Conghao Zhang, Simon A. Hirota, Kirk Bergstrom, Leigh A. Knodler, Bruce A. Vallance","doi":"10.1080/19490976.2024.2413372","DOIUrl":"https://doi.org/10.1080/19490976.2024.2413372","url":null,"abstract":"The host restricts Salmonella enterica serovar Typhimurium infection of the gut via inflammasome-dependent sloughing of infected epithelial cells. Here we determined that concurrent caspase 1/11-de...","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"11 1","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gut MicrobesPub Date : 2024-10-18DOI: 10.1080/19490976.2024.2401654
Enriqueta Garcia-Gutierrez,A Kate O'Mahony,Reinaldo Sousa Dos Santos,Laura Marroquí,Paul D Cotter
{"title":"Gut microbial metabolic signatures in diabetes mellitus and potential preventive and therapeutic applications.","authors":"Enriqueta Garcia-Gutierrez,A Kate O'Mahony,Reinaldo Sousa Dos Santos,Laura Marroquí,Paul D Cotter","doi":"10.1080/19490976.2024.2401654","DOIUrl":"https://doi.org/10.1080/19490976.2024.2401654","url":null,"abstract":"Diabetes mellitus can be subdivided into several categories based on origin and clinical characteristics. The most common forms of diabetes are type 1 (T1D), type 2 diabetes (T2D) and gestational diabetes mellitus (GDM). T1D and T2D are chronic diseases affecting around 537 million adults worldwide and it is projected that these numbers will increase by 12% over the next two decades, while GDM affects up to 30% of women during pregnancy, depending on diagnosis methods. These forms of diabetes have varied origins: T1D is an autoimmune disease, while T2D is commonly associated with, but not limited to, certain lifestyle patterns and GDM can result of a combination of genetic predisposition and pregnancy factors. Despite some pathogenic differences among these forms of diabetes, there are some common markers associated with their development. For instance, gut barrier impairment and inflammation associated with an unbalanced gut microbiota and their metabolites may be common factors in diabetes development and progression. Here, we summarize the microbial signatures that have been linked to diabetes, how they are connected to diet and, ultimately, the impact on metabolite profiles resulting from host-gut microbiota-diet interactions. Additionally, we summarize recent advances relating to promising preventive and therapeutic interventions focusing on the targeted modulation of the gut microbiota to alleviate T1D, T2D and GDM.","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"77 1","pages":"2401654"},"PeriodicalIF":12.2,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gut MicrobesPub Date : 2024-10-17DOI: 10.1080/19490976.2024.2416915
Wenjing Wang,Zhexin Fan,Qingqing Yan,Tong Pan,Jing Luo,Yijiang Wei,Baokun Li,Zhifeng Fang,Wenwei Lu
{"title":"Gut microbiota determines the fate of dietary fiber-targeted interventions in host health.","authors":"Wenjing Wang,Zhexin Fan,Qingqing Yan,Tong Pan,Jing Luo,Yijiang Wei,Baokun Li,Zhifeng Fang,Wenwei Lu","doi":"10.1080/19490976.2024.2416915","DOIUrl":"https://doi.org/10.1080/19490976.2024.2416915","url":null,"abstract":"Epidemiological investigation confirmed that the intake of dietary fiber (DF) is closely related to human health, and the most important factor affecting the physiological function of DF, besides its physicochemical properties, is the gut microbiota. This paper mainly summarizes the interaction between DF and gut microbiota, including the influence of DF on the colonization of gut microbiota based on its different physicochemical properties, and the physiological role of gut microbiota in destroying the complex molecular structure of DF by encoding carbohydrate-active enzymes, thus producing small molecular products that affect the metabolism of the host. Taking cardiovascular disease (Atherosclerosis and hypertension), liver disease, and immune diseases as examples, it is confirmed that some DF, such as fructo-oligosaccharide, galactooligosaccharide, xylo-oligosaccharide, and inulin, have prebiotic-like physiological effects. These effects are dependent on the metabolites produced by the gut microbiota. Therefore, this paper further explores how DF affects the gut microbiota's production of substances such as short-chain fatty acids, bile acids, and tryptophan metabolites, and provides a preliminary explanation of the mechanisms associated with their impact on host health. Finally, based on the structural properties of DF and the large heterogeneity in the composition of the population gut microbiota, it may be a future trend to utilize DF and the gut microbiota to correlate host health for precision nutrition by combining the information from population disease databases.","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"12 1","pages":"2416915"},"PeriodicalIF":12.2,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gut MicrobesPub Date : 2024-10-16DOI: 10.1080/19490976.2024.2416517
Francesco Vacca, Thomas C. Mules, Mali Camberis, Brittany Lavender, Sophia-Louise Noble, Alissa Cait, Kate Maclean, John Mamum, Bibek Yumnam, Tama Te Kawa, Laura Ferrer-Font, Jeffry S. Tang, Olivier Gasser, Graham Le Gros, Stephen Inns
{"title":"Controlled infection with cryopreserved human hookworm induces CTLA-4 expression on Tregs and upregulates tryptophan metabolism","authors":"Francesco Vacca, Thomas C. Mules, Mali Camberis, Brittany Lavender, Sophia-Louise Noble, Alissa Cait, Kate Maclean, John Mamum, Bibek Yumnam, Tama Te Kawa, Laura Ferrer-Font, Jeffry S. Tang, Olivier Gasser, Graham Le Gros, Stephen Inns","doi":"10.1080/19490976.2024.2416517","DOIUrl":"https://doi.org/10.1080/19490976.2024.2416517","url":null,"abstract":"Infecting humans with controlled doses of helminths, such as human hookworm (termed hookworm therapy), is proposed to prevent or treat various intestinal and extraintestinal diseases. However, full...","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"28 1","pages":""},"PeriodicalIF":12.2,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gut MicrobesPub Date : 2024-10-16DOI: 10.1080/19490976.2024.2412676
Elena Fekete,Thibault Allain,Olivia Sosnowski,Stephanie Anderson,Ian A Lewis,Andre G Buret
{"title":"Giardia spp.-induced microbiota dysbiosis disrupts intestinal mucin glycosylation.","authors":"Elena Fekete,Thibault Allain,Olivia Sosnowski,Stephanie Anderson,Ian A Lewis,Andre G Buret","doi":"10.1080/19490976.2024.2412676","DOIUrl":"https://doi.org/10.1080/19490976.2024.2412676","url":null,"abstract":"Infection with the protozoan parasite Giardia duodenalis (syn. intestinalis, lamblia) has been associated with intestinal mucus disruptions and microbiota dysbiosis. The mechanisms remain incompletely understood. Mucus consists primarily of densely glycosylated mucin glycoproteins. Mucin O-glycans influence mucus barrier properties and mucin-microbe interactions and are frequently altered during disease. In this study, we observed time-dependent and regiospecific alterations to intestinal mucin glycosylation patterns and the expression of mucin-associated glycosyltransferase genes during Giardia infection. Glycosylation alterations were observed in Giardia-infected mice in the upper small intestine, the site of parasite colonization, and in the distal colon, where active trophozoites were absent. Alterations occurred as early as day 2 post-infection and persisted in mice after parasite clearance. We also observed small intestinal goblet cell hyperplasia and thinning of the distal colon mucus barrier during early infection, and microbiota alterations and altered production of cecal SCFAs. Giardia-induced alterations to mucin glycosylation were at least in part dependent on microbiota dysbiosis, as transplantation of a dysbiotic mucosal microbiota collected from Giardia-infected mice recapitulated some alterations. This study describes a novel mechanism by which Giardia alters intestinal mucin glycosylation, and implicates the small intestinal microbiota in regulation of mucin glycosylation patterns throughout the gastrointestinal tract.","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"24 1","pages":"2412676"},"PeriodicalIF":12.2,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-fat diet-induced L-saccharopine accumulation inhibits estradiol synthesis and damages oocyte quality by disturbing mitochondrial homeostasis.","authors":"Jingyi Wen,Yanzhi Feng,Liru Xue,Suzhen Yuan,Qian Chen,Aiyue Luo,Shixuan Wang,Jinjin Zhang","doi":"10.1080/19490976.2024.2412381","DOIUrl":"https://doi.org/10.1080/19490976.2024.2412381","url":null,"abstract":"High-fat diet (HFD) has been linked to female infertility. However, the specific age at which HFD impacts ovarian function and the underlying mechanisms remain poorly understood. Here, we administered a HFD to female mice at various developmental stages: pre-puberty (4 weeks old), post-puberty (6 weeks old), young adult (9 weeks old), and middle age (32 weeks old). Our observations indicated that ovarian function was most significantly compromised when HFD was initiated at post-puberty. Consequently, post-puberty mice were chosen for further investigation. Through transplantation of fecal bacteria from the HFD mice to the mice on a normal diet, we confirmed that gut microbiota dysbiosis contributed to HFD-induced deteriorated fertility and disrupted estradiol synthesis. Utilizing untargeted and targeted metabolomics analyses, we identified L-saccharopine as a key metabolite, which was enriched in the feces, serum, and ovaries of HFD and HFD-FMT mice. Subsequent in vitro and in vivo experiments demonstrated that L-saccharopine disrupted mitochondrial homeostasis by impeding AMPKα/MFF-mediated mitochondrial fission. This disruption ultimately hindered estradiol synthesis and compromised oocyte quality. AICAR, an activator of AMPKα, ameliorated L-saccharopine induced mitochondrial damage in granulosa cells and oocytes, thereby enhancing E2 synthesis and improving oocyte quality. Collectively, our findings indicate that the accumulation of L-saccharopine may play a pivotal role in mediating HFD-induced ovarian dysfunction. This highlights the potential therapeutic benefits of targeting the gut microbiota-metabolite-ovary axis to address HFD-induced ovarian dysfunction.","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"66 1","pages":"2412381"},"PeriodicalIF":12.2,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gut MicrobesPub Date : 2024-10-14DOI: 10.1080/19490976.2024.2412669
Felix F Krause,Kira I Mangold,Anna-Lena Ruppert,Hanna Leister,Anne Hellhund-Zingel,Aleksandra Lopez Krol,Jelena Pesek,Bernhard Watzer,Sarah Winterberg,Hartmann Raifer,Kai Binder,Ralf Kinscherf,Alesia Walker,Wolfgang A Nockher,R Verena Taudte,Wilhelm Bertrams,Bernd Schmeck,Anja A Kühl,Britta Siegmund,Rossana Romero,Maik Luu,Stephan Göttig,Isabelle Bekeredjian-Ding,Ulrich Steinhoff,Burkhard Schütz,Alexander Visekruna
{"title":"Clostridium sporogenes-derived metabolites protect mice against colonic inflammation.","authors":"Felix F Krause,Kira I Mangold,Anna-Lena Ruppert,Hanna Leister,Anne Hellhund-Zingel,Aleksandra Lopez Krol,Jelena Pesek,Bernhard Watzer,Sarah Winterberg,Hartmann Raifer,Kai Binder,Ralf Kinscherf,Alesia Walker,Wolfgang A Nockher,R Verena Taudte,Wilhelm Bertrams,Bernd Schmeck,Anja A Kühl,Britta Siegmund,Rossana Romero,Maik Luu,Stephan Göttig,Isabelle Bekeredjian-Ding,Ulrich Steinhoff,Burkhard Schütz,Alexander Visekruna","doi":"10.1080/19490976.2024.2412669","DOIUrl":"https://doi.org/10.1080/19490976.2024.2412669","url":null,"abstract":"Gut microbiota-derived metabolites play a pivotal role in the maintenance of intestinal immune homeostasis. Here, we demonstrate that the human commensal Clostridium sporogenes possesses a specific metabolic fingerprint, consisting predominantly of the tryptophan catabolite indole-3-propionic acid (IPA), the branched-chain acids (BCFAs) isobutyrate and isovalerate and the short-chain fatty acids (SCFAs) acetate and propionate. Mono-colonization of germ-free mice with C. sporogenes (CS mice) affected colonic mucosal immune cell phenotypes, including up-regulation of Il22 gene expression, and increased abundance of transcriptionally active colonic tuft cells and Foxp3+ regulatory T cells (Tregs). In DSS-induced colitis, conventional mice suffered severe inflammation accompanied by loss of colonic crypts. These symptoms were absent in CS mice. In conventional, but not CS mice, bulk RNAseq analysis of the colon revealed an increase in inflammatory and Th17-related gene signatures. C. sporogenes-derived IPA reduced IL-17A protein expression by suppressing mTOR activity and by altering ribosome-related pathways in Th17 cells. Additionally, BCFAs and SCFAs generated by C. sporogenes enhanced the activity of Tregs and increased the production of IL-22, which led to protection from colitis. Collectively, we identified C. sporogenes as a therapeutically relevant probiotic bacterium that might be employed in patients with inflammatory bowel disease (IBD).","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"23 1","pages":"2412669"},"PeriodicalIF":12.2,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142436105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Entamoeba muris mitigates metabolic consequences of high-fat diet in mice.","authors":"Maryline Roy,Anne Dumay,Sandrine Adiba,Sylvana Rozes,Seiki Kobayashi,Valérie Paradis,Catherine Postic,Dominique Rainteau,Eric Ogier-Denis,Maud Le Gall,Ulrich Meinzer,Emilie Viennois,Maite Casado-Bedmar,Alexis Mosca,Jean-Pierre Hugot","doi":"10.1080/19490976.2024.2409210","DOIUrl":"https://doi.org/10.1080/19490976.2024.2409210","url":null,"abstract":"Metabolic syndrome (MetS) is a cluster of several human conditions including abdominal obesity, hypertension, dyslipidemia, and hyperglycemia, all of which are risk factors of type 2 diabetes, cardiovascular disease, and metabolic dysfunction-associated steatotic liver disease (MASLD). Dietary pattern is a well-recognized MetS risk factor, but additional changes related to the modern Western life-style may also contribute to MetS. Here we hypothesize that the disappearance of amoebas in the gut plays a role in the emergence of MetS in association with dietary changes. Four groups of C57B/6J mice fed with a high-fat diet (HFD) or a normal diet (ND) were colonized or not with Entamoeba muris, a commensal amoeba. Seventy days after inoculation, cecal microbiota, and bile acid compositions were analyzed by high-throughput sequencing of 16S rDNA and mass spectrometry, respectively. Cytokine concentrations were measured in the gut, liver, and mesenteric fat looking for low-grade inflammation. The impact of HFD on liver metabolic dysfunction was explored by Oil Red O staining, triglycerides, cholesterol concentrations, and the expression of genes involved in β-oxidation and lipogenesis. Colonization with E. muris had a beneficial impact, with a reduction in dysbiosis, lower levels of fecal secondary bile acids, and an improvement in hepatic steatosis, arguing for a protective role of commensal amoebas in MetS and more specifically HFD-associated MASLD.","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"56 1","pages":"2409210"},"PeriodicalIF":12.2,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142436106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gut MicrobesPub Date : 2024-10-12DOI: 10.1080/19490976.2024.2415490
Madeline Krieger,Mingzhe Guo,Justin Merritt
{"title":"Reexamining the role of Fusobacterium nucleatum subspecies in clinical and experimental studies.","authors":"Madeline Krieger,Mingzhe Guo,Justin Merritt","doi":"10.1080/19490976.2024.2415490","DOIUrl":"https://doi.org/10.1080/19490976.2024.2415490","url":null,"abstract":"The Gram-negative anaerobic species Fusobacterium nucleatum was originally described as a commensal organism from the human oral microbiome. However, it is now widely recognized as a key inflammophilic pathobiont associated with a wide variety of oral and extraoral diseases. Historically, F. nucleatum has been classified into four subspecies that have been generally considered as functionally interchangeable in their pathogenic potential. Recent studies have challenged this notion, as clinical data reveal a highly biased distribution of F. nucleatum subspecies within disease sites of both inflammatory oral diseases and various malignancies. This review details the historical basis for the F. nucleatum subspecies designations and summarizes our current understanding of the similarities and distinctions between these organisms to provide important context for future clinical and laboratory studies of F. nucleatum.","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"1 1","pages":"2415490"},"PeriodicalIF":12.2,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}