Gut MicrobesPub Date : 2025-12-01Epub Date: 2024-12-17DOI: 10.1080/19490976.2024.2443107
Hongmin Sun, Lingyan Jiang, Jingnan Chen, Chenbo Kang, Jun Yan, Shuai Ma, Mengjie Zhao, Houliang Guo, Bin Yang
{"title":"Genomic island-encoded LmiA regulates acid resistance and biofilm formation in enterohemorrhagic <i>Escherichia coli</i> O157:H7.","authors":"Hongmin Sun, Lingyan Jiang, Jingnan Chen, Chenbo Kang, Jun Yan, Shuai Ma, Mengjie Zhao, Houliang Guo, Bin Yang","doi":"10.1080/19490976.2024.2443107","DOIUrl":"10.1080/19490976.2024.2443107","url":null,"abstract":"<p><p>Enterohemorrhagic <i>Escherichia coli</i> (EHEC) O157:H7 is an important intestinal pathogen that causes severe foodborne diseases. We previously demonstrated that the genomic island-encoded regulator LmiA activates the locus of enterocyte effacement (LEE) genes to promote EHEC O157:H7 adherence and colonization in the host intestine. However, whether LmiA is involved in the regulation of any other biological processes in EHEC O157:H7 remains largely unexplored. Here, we compared global gene expression differences between the EHEC O157:H7 wild-type strain and an <i>lmiA</i> mutant strain using RNA-seq technology. Genes whose expression was affected by LmiA were identified and classified using the Cluster of Orthologous Groups (COG) database. Specifically, the expression of acid resistance genes (including <i>gadA</i>, <i>gadB</i>, and <i>gadC</i>) was significantly downregulated, whereas the transcript levels of biofilm-related genes (including <i>Z_RS00105</i>, <i>yadN</i>, <i>Z_RS03020</i>, and <i>fdeC</i>) were increased, in the Δ<i>lmiA</i> mutant compared to the EHEC O157:H7 wild-type strain. Further investigation revealed that LmiA enhanced the acid resistance of EHEC O157:H7 by directly activating the transcription of <i>gadA</i> and <i>gadBC</i>. In contrast, LmiA reduced EHEC O157:H7 biofilm formation by indirectly repressing the expression of biofilm-related genes. Furthermore, LmiA-mediated regulation of acid resistance and biofilm formation is highly conserved and widespread among EHEC and enteropathogenic <i>E. coli</i> (EPEC). Our findings provide essential insight into the regulatory function of LmiA in EHEC O157:H7, particularly its role in regulating acid resistance and biofilm formation.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2443107"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657066/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142846257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gut MicrobesPub Date : 2025-12-01Epub Date: 2024-12-17DOI: 10.1080/19490976.2024.2437247
Xuan-Qi Zheng, Ding-Ben Wang, Yi-Rong Jiang, Chun-Li Song
{"title":"Gut microbiota and microbial metabolites for osteoporosis.","authors":"Xuan-Qi Zheng, Ding-Ben Wang, Yi-Rong Jiang, Chun-Li Song","doi":"10.1080/19490976.2024.2437247","DOIUrl":"10.1080/19490976.2024.2437247","url":null,"abstract":"<p><p>Osteoporosis is an age-related bone metabolic disease. As an essential endocrine organ, the skeletal system is intricately connected with extraosseous organs. The crosstalk between bones and other organs supports this view. In recent years, the link between the gut microecology and bone metabolism has become an important research topic, both in preclinical studies and in clinical trials. Many studies have shown that skeletal changes are accompanied by changes in the composition and structure of the gut microbiota (GM). At the same time, natural or artificial interventions targeting the GM can subsequently affect bone metabolism. Moreover, microbiome-related metabolites may have important effects on bone metabolism. We aim to review the relationships among the GM, microbial metabolites, and bone metabolism and to summarize the potential mechanisms involved and the theory of the gut‒bone axis. We also describe existing bottlenecks in laboratory studies, as well as existing challenges in clinical settings, and propose possible future research directions.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2437247"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657146/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142846350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gut MicrobesPub Date : 2025-12-01Epub Date: 2024-12-25DOI: 10.1080/19490976.2024.2442522
Martha A Zepeda-Rivera, Yannick Eisele, Alexander Baryiames, Hanrui Wu, Claudia Mengoni, Gianmarco Piccinno, Elsa F McMahon, Kaitlyn D LaCourse, Dakota S Jones, Hans Hauner, Samuel S Minot, Nicola Segata, Floyd E Dewhirst, Christopher D Johnston, Susan Bullman
{"title":"<i>Fusobacterium sphaericum</i> sp. nov., isolated from a human colon tumor adheres to colonic epithelial cells and induces IL-8 secretion.","authors":"Martha A Zepeda-Rivera, Yannick Eisele, Alexander Baryiames, Hanrui Wu, Claudia Mengoni, Gianmarco Piccinno, Elsa F McMahon, Kaitlyn D LaCourse, Dakota S Jones, Hans Hauner, Samuel S Minot, Nicola Segata, Floyd E Dewhirst, Christopher D Johnston, Susan Bullman","doi":"10.1080/19490976.2024.2442522","DOIUrl":"https://doi.org/10.1080/19490976.2024.2442522","url":null,"abstract":"<p><p>Cancerous tissue is a largely unexplored microbial niche that provides a unique environment for the colonization and growth of specific bacterial communities, and with it, the opportunity to identify novel bacterial species. Here, we report distinct features of a novel <i>Fusobacterium</i> species, <i>F.</i> <i>sphaericum</i> sp. nov. (<i>Fs</i>), isolated from primary colon adenocarcinoma tissue. We acquire the complete closed genome and associated methylome of this organism and phylogenetically confirm its classification into the <i>Fusobacterium</i> genus, with <i>F. perfoetens</i> as its closest neighbor. <i>Fs</i> is phenotypically and genetically distinct, with morphological analysis revealing its coccoid shape, that while similar to <i>F. perfoetens</i> is rare for most <i>Fusobacterium</i> members. <i>Fs</i> displays a metabolic profile and antibiotic resistance repertoire consistent with other <i>Fusobacterium</i> species. <i>In vitro, Fs</i> has adherent and immunomodulatory capabilities, as it intimately associates with human colon cancer epithelial cells and promotes IL-8 secretion. An analysis of the prevalence and abundance of <i>Fs</i> in > 20,000 human metagenomic samples shows that it is a rarely detected member within human stool with variable relative abundance, found in both healthy controls and patients with colorectal cancer (CRC). Our study sheds light on a novel bacterial species isolated directly from the human CRC tumor niche and given its <i>in</i> <i>vitro</i> interaction with cancer epithelial cells suggests that its role in human health and disease warrants further investigation.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2442522"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142894076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gut MicrobesPub Date : 2025-12-01Epub Date: 2025-01-28DOI: 10.1080/19490976.2025.2457490
Lingyue An, Shujue Li, Zhenglin Chang, Min Lei, Zhican He, Peng Xu, Shike Zhang, Zheng Jiang, Muhammad Sarfaraz Iqbal, Xinyuan Sun, Hongxing Liu, Xiaolu Duan, Wenqi Wu
{"title":"Gut microbiota modulation via fecal microbiota transplantation mitigates hyperoxaluria and calcium oxalate crystal depositions induced by high oxalate diet.","authors":"Lingyue An, Shujue Li, Zhenglin Chang, Min Lei, Zhican He, Peng Xu, Shike Zhang, Zheng Jiang, Muhammad Sarfaraz Iqbal, Xinyuan Sun, Hongxing Liu, Xiaolu Duan, Wenqi Wu","doi":"10.1080/19490976.2025.2457490","DOIUrl":"10.1080/19490976.2025.2457490","url":null,"abstract":"<p><p>Hyperoxaluria, including primary and secondary hyperoxaluria, is a disorder characterized by increased urinary oxalate excretion and could lead to recurrent calcium oxalate kidney stones, nephrocalcinosis and eventually end stage renal disease. For secondary hyperoxaluria, high dietary oxalate (HDOx) or its precursors intake is a key reason. Recently, accumulated studies highlight the important role of gut microbiota in the regulation of oxalate homeostasis. However, the underlying mechanisms involving gut microbiota and metabolite disruptions in secondary hyperoxaluria remain poorly understood. Here, we investigated the therapeutic efficacy of fecal microbiota transplantation (FMT) sourced from healthy rats fed with standard pellet diet against urinary oxalate excretion, renal damage and calcium oxalate (CaOx) crystal depositions via using hyperoxaluria rat models. We observed dose-dependent increases in urinary oxalate excretion and CaOx crystal depositions due to hyperoxaluria, accompanied by significant reductions in gut microbiota diversity characterized by shifts in <i>Ruminococcaceae_UCG-014</i> and <i>Parasutterella</i> composition. Metabolomic analysis validated these findings, revealing substantial decreases in key metabolites associated with these microbial groups. Transplanting microbes from healthy rats effectively reduced HDOx-induced urinary oxalate excretion and CaOx crystal depositions meanwhile restoring <i>Ruminococcaceae_UCG-014</i> and <i>Parasutterella</i> populations and their associated metabolites. Furthermore, FMT treatment could significantly decrease the urinary oxalate excretion and CaOx crystal depositions in rat kidneys via, at least in part, upregulating the expressions of intestinal barrier proteins and oxalate transporters in the intestine. In conclusion, our study emphasizes the effectiveness of FMT in countering HDOx-induced hyperoxaluria by restoring gut microbiota and related metabolites. These findings provide insights on the complex connection between secondary hyperoxaluria caused by high dietary oxalate and disruptions in gut microbiota, offering promising avenues for targeted therapeutic strategies.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2457490"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776474/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143052280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gut MicrobesPub Date : 2025-12-01Epub Date: 2025-01-08DOI: 10.1080/19490976.2024.2449111
Yong Sun, Qiwen Wang, Yao Jiang, Jiamin He, Dingjiacheng Jia, Man Luo, Wentao Shen, Qingyi Wang, Yadong Qi, Yifeng Lin, Ying Zhang, Lan Wang, Liangjing Wang, Shujie Chen, Lina Fan
{"title":"<i>Lactobacillus intestinalis</i> facilitates tumor-derived CCL5 to recruit dendritic cell and suppress colorectal tumorigenesis.","authors":"Yong Sun, Qiwen Wang, Yao Jiang, Jiamin He, Dingjiacheng Jia, Man Luo, Wentao Shen, Qingyi Wang, Yadong Qi, Yifeng Lin, Ying Zhang, Lan Wang, Liangjing Wang, Shujie Chen, Lina Fan","doi":"10.1080/19490976.2024.2449111","DOIUrl":"10.1080/19490976.2024.2449111","url":null,"abstract":"<p><p>Gut microbes play a crucial role in regulating the tumor microenvironment (TME) of colorectal cancer (CRC). Nevertheless, the deep mechanism between the microbiota-TME interaction has not been well explored. In this study, we for the first time discovered that <i>Lactobacillus intestinalis</i> (<i>L. intestinalis</i>) effectively suppressed tumor growth both in the AOM/DSS-induced CRC model and the <i>Apc</i><sup>Min/+</sup> spontaneous adenoma model. Our investigation revealed that <i>L. intestinalis</i> increased the infiltration of immune cells, particularly dendritic cells (DC), in the TME. Mechanically, the tumor-derived CCL5 induced by <i>L. intestinalis</i> recruited DC chemotaxis through the NOD1/NF-κB signaling pathway. In clinical samples and datasets, we found positive correlation between <i>L. intestinalis</i>, CCL5 level, and the DC-related genes. Our study provided a new strategy for microbial intervention for CRC and deepened the understanding of the interaction between tumor cells and the immune microenvironment modulated by gut microbes.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2449111"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730368/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142947795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gut MicrobesPub Date : 2025-12-01Epub Date: 2025-01-07DOI: 10.1080/19490976.2024.2447822
Naika Prince, Lucia N Peralta Marzal, Léa Roussin, Magali Monnoye, Catherine Philippe, Elise Maximin, Sabbir Ahmed, Karoliina Salenius, Jake Lin, Reija Autio, Youri Adolfs, R Jeroen Pasterkamp, Johan Garssen, Laurent Naudon, Sylvie Rabot, Aletta D Kraneveld, Paula Perez-Pardo
{"title":"Mouse strain-specific responses along the gut-brain axis upon fecal microbiota transplantation from children with autism.","authors":"Naika Prince, Lucia N Peralta Marzal, Léa Roussin, Magali Monnoye, Catherine Philippe, Elise Maximin, Sabbir Ahmed, Karoliina Salenius, Jake Lin, Reija Autio, Youri Adolfs, R Jeroen Pasterkamp, Johan Garssen, Laurent Naudon, Sylvie Rabot, Aletta D Kraneveld, Paula Perez-Pardo","doi":"10.1080/19490976.2024.2447822","DOIUrl":"10.1080/19490976.2024.2447822","url":null,"abstract":"<p><p>Several factors are linked to the pathophysiology of autism spectrum disorders (ASD); however, the molecular mechanisms of the condition remain unknown. As intestinal problems and gut microbiota dysbiosis are associated with ASD development and severity, recent studies have focused on elucidating the microbiota-gut-brain axis' involvement. This study aims to explore mechanisms through which gut microbiota might influence ASD. Briefly, we depleted the microbiota of conventional male BALB/cAnNCrl (Balb/c) and C57BL/6J (BL/6) mice prior to human fecal microbiota transplantation (hFMT) with samples from children with ASD or their neurotypical siblings. We found mouse strain-specific responses to ASD hFMT. Notably, Balb/c mice exhibit decreased exploratory and social behavior, and show evidence of intestinal, systemic, and central inflammation accompanied with metabolic shifts. BL/6 mice show less changes after hFMT. Our results reveal that gut microbiota alone induce changes in ASD-like behavior, and highlight the importance of mouse strain selection when investigating multifactorial conditions like ASD.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2447822"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730631/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142947805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gut MicrobesPub Date : 2025-12-01Epub Date: 2025-01-02DOI: 10.1080/19490976.2024.2447836
Jeremiah J Faith
{"title":"Assessing live microbial therapeutic transmission.","authors":"Jeremiah J Faith","doi":"10.1080/19490976.2024.2447836","DOIUrl":"10.1080/19490976.2024.2447836","url":null,"abstract":"<p><p>The development of fecal microbiota transplantation and defined live biotherapeutic products for the treatment of human disease has been an empirically driven process yielding a notable success of approved drugs for the treatment of recurrent <i>Clostridioides difficile</i> infection. Assessing the potential of this therapeutic modality in other indications with mixed clinical results would benefit from consistent quantitative frameworks to characterize drug potency and composition and to assess the impact of dose and composition on the frequency and duration of strain engraftment. Monitoring these drug properties and engraftment outcomes would help identify minimally sufficient sets of microbial strains to treat disease and provide insights into the intersection between microbial function and host physiology. Broad and correct usage of strain detection methods is essential to this advancement. This article describes strain detection approaches, where they are best applied, what data they require, and clinical trial designs that are best suited to their application.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2447836"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142921237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gut MicrobesPub Date : 2025-12-01Epub Date: 2025-01-22DOI: 10.1080/19490976.2025.2455503
Peiling Geng, Ni Zhao, Yufan Zhou, Reuben S Harris, Yong Ge
{"title":"<i>Faecalibacterium prausnitzii</i> regulates carbohydrate metabolic functions of the gut microbiome in C57BL/6 mice.","authors":"Peiling Geng, Ni Zhao, Yufan Zhou, Reuben S Harris, Yong Ge","doi":"10.1080/19490976.2025.2455503","DOIUrl":"https://doi.org/10.1080/19490976.2025.2455503","url":null,"abstract":"<p><p>The probiotic impact of microbes on host metabolism and health depends on both host genetics and bacterial genomic variation. <i>Faecalibacterium prausnitzii</i> is the predominant human gut commensal emerging as a next-generation probiotic. Although this bacterium exhibits substantial intraspecies diversity, it is unclear whether genetically distinct <i>F. prausnitzii</i> strains might lead to functional differences in the gut microbiome. Here, we isolated and characterized a novel <i>F. prausnitzii</i> strain (UT1) that belongs to the most prevalent but underappreciated phylogenetic clade in the global human population. Genome analysis showed that this butyrate-producing isolate carries multiple putative mobile genetic elements, a clade-specific defense system, and a range of carbohydrate catabolic enzymes. Multiomic approaches were used to profile the impact of UT1 on the gut microbiome and associated metabolic activity of C57BL/6 mice at homeostasis. Both 16S rRNA and metagenomic sequencing demonstrated that oral administration of UT1 resulted in profound microbial compositional changes including a significant enrichment of <i>Lactobacillus</i>, <i>Bifidobacterium</i>, and <i>Turicibacter</i>. Functional profiling of the fecal metagenomes revealed a markedly higher abundance of carbohydrate-active enzymes (CAZymes) in UT1-gavaged mice. Accordingly, UT1-conditioned microbiota possessed the elevated capability of utilizing starch <i>in vitro</i> and exhibited a lower availability of microbiota-accessible carbohydrates in the gut. Further analysis uncovered a functional network wherein UT1 reduced the abundance of mucin-degrading CAZymes and microbes, which correlated with a concomitant reduction of fecal mucin glycans. Collectively, our results reveal a crucial role of UT1 in facilitating the carbohydrate metabolism of the gut microbiome and expand our understanding of the genetic and phenotypic diversity of <i>F. prausnitzii</i>.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2455503"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143004535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gut MicrobesPub Date : 2025-12-01Epub Date: 2025-01-15DOI: 10.1080/19490976.2025.2450871
Ying Zhang, Aiting Wang, Wei Zhao, Jia'an Qin, Yu Zhang, Bing Liu, Chengcheng Yao, Jianglan Long, Mingxia Yuan, Dan Yan
{"title":"Microbial succinate promotes the response to metformin by upregulating secretory immunoglobulin a in intestinal immunity.","authors":"Ying Zhang, Aiting Wang, Wei Zhao, Jia'an Qin, Yu Zhang, Bing Liu, Chengcheng Yao, Jianglan Long, Mingxia Yuan, Dan Yan","doi":"10.1080/19490976.2025.2450871","DOIUrl":"10.1080/19490976.2025.2450871","url":null,"abstract":"<p><p>Metformin is the first-line pharmacotherapy for type 2 diabetes mellitus; however, many patients respond poorly to this drug in clinical practice. The potential involvement of microbiota-mediated intestinal immunity and related signals in metformin responsiveness has not been previously investigated. In this study, we successfully constructed a humanized mouse model by fecal transplantation of the gut microbiota from clinical metformin-treated - responders and non-responders, and reproduced the difference in clinical phenotypes of responsiveness to metformin. The abundance of <i>Bacteroides thetaiotaomicron</i>, considered a representative differential bacterium of metformin responsiveness, and the level of secretory immunoglobulin A (SIgA) in intestinal immunity increased significantly in responder recipient mice following metformin treatment. In contrast, no significant alterations in <i>B. thetaiotaomicron</i> and SIgA were observed in non-responder recipient mice. The study of IgA<sup>-/-</sup> mice confirmed that downregulated expression or deficiency of SIgA resulted in non-response to metformin, meaning that metformin was unable to improve dysfunctional glucose metabolism and reduce intestinal and adipose tissue inflammation, ultimately leading to systemic insulin resistance. Furthermore, supplementation with succinate, a microbial product of <i>B. thetaiotaomicron</i>, potentially reversed the non-response to metformin by inducing the production of SIgA. In conclusion, we demonstrated that upregulated SIgA, which could be regulated by succinate, was functionally involved in metformin response through its influence on immune cell-mediated inflammation and insulin resistance. Conversely, an inability to regulate SIgA may result in a lack of response to metformin.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2450871"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740685/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142983437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gut MicrobesPub Date : 2025-12-01Epub Date: 2024-12-23DOI: 10.1080/19490976.2024.2439105
Matthieu Minty, Alberic Germain, Jiuwen Sun, Gracia Kaglan, Florence Servant, Benjamin Lelouvier, Emiri Misselis, Radu Mircea Neagoe, Menghini Rossella, Marina Cardellini, Rémy Burcelin, Massimo Federici, José Manuel Fernandez-Real, Vincent Blasco-Baque
{"title":"Identifying the location-dependent adipose tissue bacterial DNA signatures in obese patients that predict body weight loss.","authors":"Matthieu Minty, Alberic Germain, Jiuwen Sun, Gracia Kaglan, Florence Servant, Benjamin Lelouvier, Emiri Misselis, Radu Mircea Neagoe, Menghini Rossella, Marina Cardellini, Rémy Burcelin, Massimo Federici, José Manuel Fernandez-Real, Vincent Blasco-Baque","doi":"10.1080/19490976.2024.2439105","DOIUrl":"https://doi.org/10.1080/19490976.2024.2439105","url":null,"abstract":"<p><p>Recent sets of evidence have described profiles of 16S rDNA sequences in host tissues, notably in fat pads that are significantly overrepresented and can serve as signatures of metabolic disease. However, these recent and original observations need to be further detailed and functionally defined. Here, using state-of-the-art targeted DNA sequencing and discriminant predictive approaches, we describe, from the longitudinal FLORINASH cohort of patients who underwent bariatric surgery, visceral, and subcutaneous fat pad-specific bacterial 16SrRNA signatures. The corresponding <i>Porphyromonadaceae</i>, <i>Campylobacteraceae</i>, <i>Prevotellaceae</i>, <i>Actimomycetaceae</i>, <i>Veillonellaceae</i>, <i>Anaerivoracaceae</i>, <i>Fusobacteriaceae</i>, and the <i>Clostridium family XI</i> 16SrRNA DNA segment profiles are signatures of the subcutaneous adipose depot while <i>Pseudomonadaceae</i> and <i>Micrococcacecae</i>, 16SrRNA DNA sequence profiles characterize the visceral adipose depot. In addition, we have further identified that a specific pre-bariatric surgery adipose tissue bacterial DNA signature predicts the efficacy of body weight loss in obese patients 5-10 years after the surgery. 16SrRNA signatures discriminate (ROC ~ 1) the patients who did not maintain bodyweight loss and those who did. Second, from the 16SrRNA sequences we infer potential pathways suggestive of catabolic biochemical activities that could be signatures of subcutaneous adipose depots that predict body weight loss.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2439105"},"PeriodicalIF":12.2,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142876909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}