A modelling framework to characterize the impact of antibiotics on the gut microbiota diversity.

IF 12.2 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Gut Microbes Pub Date : 2025-12-01 Epub Date: 2024-12-22 DOI:10.1080/19490976.2024.2442523
Carlos Olivares, Etienne Ruppé, Stéphanie Ferreira, Tanguy Corbel, Antoine Andremont, Jean de Gunzburg, Jeremie Guedj, Charles Burdet
{"title":"A modelling framework to characterize the impact of antibiotics on the gut microbiota diversity.","authors":"Carlos Olivares, Etienne Ruppé, Stéphanie Ferreira, Tanguy Corbel, Antoine Andremont, Jean de Gunzburg, Jeremie Guedj, Charles Burdet","doi":"10.1080/19490976.2024.2442523","DOIUrl":null,"url":null,"abstract":"<p><p>Metagenomic sequencing deepened our knowledge about the role of the intestinal microbiota in human health, and several studies with various methodologies explored its dynamics during antibiotic treatments. We compared the impact of four widely used antibiotics on the gut bacterial diversity. We used plasma and fecal samples collected during and after treatment from healthy volunteers assigned to a 5-day treatment either by ceftriaxone (1 g every 24 h through IV route), ceftazidime/avibactam (2 g/500 mg every 8 h through IV route), piperacillin/tazobactam (1 g/500 mg every 8 h through IV route) or moxifloxacin (400 mg every 24 h through oral route). Antibiotic concentrations were measured in plasma and feces, and bacterial diversity was assessed by the Shannon index from 16S rRNA gene profiling. The relationship between the evolutions of antibiotic fecal exposure and bacterial diversity was modeled using non-linear mixed effects models. We compared the impact of antibiotics on gut microbiota diversity by simulation, using various reconstructed pharmacodynamic indices. Piperacillin/tazobactam was characterized by the highest impact in terms of intensity of perturbation (maximal [IQR] loss of diversity of 27.3% [1.9; 40.0]), while moxifloxacin had the longest duration of perturbation, with a time to return to 95% of baseline value after the last administration of 13.2 d [8.3; 19.1]. Overall, moxifloxacin exhibited the highest global impact, followed by piperacillin/tazobactam, ceftazidime/avibactam and ceftriaxone. Their AUC between day 0 and day 42 of the change of diversity indices from day 0 were, respectively, -13.2 Shannon unit.day [-20.4; -7.9], -10.9 Shannon unit.day [-20.4; -0.6] and -10.1 Shannon unit.day [-18.3; -4.6]. We conclude that antibiotics alter the intestinal diversity to varying degrees, both within and between antibiotics families. Such studies are needed to help antibiotic stewardship in using the antibiotics with the lowest impact on the intestinal microbiota.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2442523"},"PeriodicalIF":12.2000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut Microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19490976.2024.2442523","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Metagenomic sequencing deepened our knowledge about the role of the intestinal microbiota in human health, and several studies with various methodologies explored its dynamics during antibiotic treatments. We compared the impact of four widely used antibiotics on the gut bacterial diversity. We used plasma and fecal samples collected during and after treatment from healthy volunteers assigned to a 5-day treatment either by ceftriaxone (1 g every 24 h through IV route), ceftazidime/avibactam (2 g/500 mg every 8 h through IV route), piperacillin/tazobactam (1 g/500 mg every 8 h through IV route) or moxifloxacin (400 mg every 24 h through oral route). Antibiotic concentrations were measured in plasma and feces, and bacterial diversity was assessed by the Shannon index from 16S rRNA gene profiling. The relationship between the evolutions of antibiotic fecal exposure and bacterial diversity was modeled using non-linear mixed effects models. We compared the impact of antibiotics on gut microbiota diversity by simulation, using various reconstructed pharmacodynamic indices. Piperacillin/tazobactam was characterized by the highest impact in terms of intensity of perturbation (maximal [IQR] loss of diversity of 27.3% [1.9; 40.0]), while moxifloxacin had the longest duration of perturbation, with a time to return to 95% of baseline value after the last administration of 13.2 d [8.3; 19.1]. Overall, moxifloxacin exhibited the highest global impact, followed by piperacillin/tazobactam, ceftazidime/avibactam and ceftriaxone. Their AUC between day 0 and day 42 of the change of diversity indices from day 0 were, respectively, -13.2 Shannon unit.day [-20.4; -7.9], -10.9 Shannon unit.day [-20.4; -0.6] and -10.1 Shannon unit.day [-18.3; -4.6]. We conclude that antibiotics alter the intestinal diversity to varying degrees, both within and between antibiotics families. Such studies are needed to help antibiotic stewardship in using the antibiotics with the lowest impact on the intestinal microbiota.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Gut Microbes
Gut Microbes Medicine-Microbiology (medical)
CiteScore
18.20
自引率
3.30%
发文量
196
审稿时长
10 weeks
期刊介绍: The intestinal microbiota plays a crucial role in human physiology, influencing various aspects of health and disease such as nutrition, obesity, brain function, allergic responses, immunity, inflammatory bowel disease, irritable bowel syndrome, cancer development, cardiac disease, liver disease, and more. Gut Microbes serves as a platform for showcasing and discussing state-of-the-art research related to the microorganisms present in the intestine. The journal emphasizes mechanistic and cause-and-effect studies. Additionally, it has a counterpart, Gut Microbes Reports, which places a greater focus on emerging topics and comparative and incremental studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信