Saria Otani, Marie Louise Jespersen, Christian Brinch, Frederik Duus Møller, Bo Pilgaard, Emilie Egholm Bruun Jensen, Pimlapas Leekitcharoenphon, Christina Aaby Svendsen, Amalie H Aarestrup, Tolbert Sonda, Teresa J Sylvina, Jeff Leach, Alexander Piel, Fiona Stewart, Panagiotis Sapountzis, Paul E Kazyoba, Happiness Kumburu, Frank M Aarestrup
{"title":"Genomic and functional co-diversification imprint African Hominidae microbiomes to signal dietary and lifestyle adaptations.","authors":"Saria Otani, Marie Louise Jespersen, Christian Brinch, Frederik Duus Møller, Bo Pilgaard, Emilie Egholm Bruun Jensen, Pimlapas Leekitcharoenphon, Christina Aaby Svendsen, Amalie H Aarestrup, Tolbert Sonda, Teresa J Sylvina, Jeff Leach, Alexander Piel, Fiona Stewart, Panagiotis Sapountzis, Paul E Kazyoba, Happiness Kumburu, Frank M Aarestrup","doi":"10.1080/19490976.2025.2484385","DOIUrl":null,"url":null,"abstract":"<p><p>In the diverse landscape of African hominids, the obligate relationship between the host and its microbiome narrates signals of adaptation and co-evolution. Sequencing 546 African hominid metagenomes, including those from indigenous Hadza and wild chimpanzees, identified similar bacterial richness and diversity surpassing those of westernized populations. While hominids share core bacterial communities, they also harbor distinct, population-specific bacterial taxa tailored to specific diets, ecology and lifestyles, differentiating non-indigenous and indigenous humans and chimpanzees. Even amongst shared bacterial communities, several core bacteria have co-diversified to fulfil unique dietary degradation functions within their host populations. These co-evolutionary trends extend to non-bacterial elements, such as mitochondrial DNA, antimicrobial resistance, and parasites. Our findings indicate that microbiome-host co-adaptations have led to both taxonomic and within taxa functional displacements to meet host physiological demands. The microbiome, in turn, transcends its taxonomic interchangeable role, reflecting the lifestyle, ecology and dietary history of its host.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2484385"},"PeriodicalIF":12.2000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959905/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut Microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19490976.2025.2484385","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the diverse landscape of African hominids, the obligate relationship between the host and its microbiome narrates signals of adaptation and co-evolution. Sequencing 546 African hominid metagenomes, including those from indigenous Hadza and wild chimpanzees, identified similar bacterial richness and diversity surpassing those of westernized populations. While hominids share core bacterial communities, they also harbor distinct, population-specific bacterial taxa tailored to specific diets, ecology and lifestyles, differentiating non-indigenous and indigenous humans and chimpanzees. Even amongst shared bacterial communities, several core bacteria have co-diversified to fulfil unique dietary degradation functions within their host populations. These co-evolutionary trends extend to non-bacterial elements, such as mitochondrial DNA, antimicrobial resistance, and parasites. Our findings indicate that microbiome-host co-adaptations have led to both taxonomic and within taxa functional displacements to meet host physiological demands. The microbiome, in turn, transcends its taxonomic interchangeable role, reflecting the lifestyle, ecology and dietary history of its host.
期刊介绍:
The intestinal microbiota plays a crucial role in human physiology, influencing various aspects of health and disease such as nutrition, obesity, brain function, allergic responses, immunity, inflammatory bowel disease, irritable bowel syndrome, cancer development, cardiac disease, liver disease, and more.
Gut Microbes serves as a platform for showcasing and discussing state-of-the-art research related to the microorganisms present in the intestine. The journal emphasizes mechanistic and cause-and-effect studies. Additionally, it has a counterpart, Gut Microbes Reports, which places a greater focus on emerging topics and comparative and incremental studies.