Groundwater最新文献

筛选
英文 中文
Development of the Groundwater Concept Inventory to Measure Groundwater Knowledge in a General Audience 开发地下水概念清单 (GWCI),以衡量普通受众的地下水知识。
IF 2 4区 地球科学
Groundwater Pub Date : 2023-12-18 DOI: 10.1111/gwat.13380
Ann Ojeda, Stephanie R. Rogers, Charlotte Jannach, Karen S. McNeal
{"title":"Development of the Groundwater Concept Inventory to Measure Groundwater Knowledge in a General Audience","authors":"Ann Ojeda,&nbsp;Stephanie R. Rogers,&nbsp;Charlotte Jannach,&nbsp;Karen S. McNeal","doi":"10.1111/gwat.13380","DOIUrl":"10.1111/gwat.13380","url":null,"abstract":"<p>Groundwater is a critical resource globally, and understanding groundwater processes is vital to ensure sustainable management practices. However, there are many widely held misconceptions and inaccuracies about groundwater, and we currently lack tools to measure groundwater knowledge across large populations and measure how groundwater knowledge relates to management decisions or behaviors. Here, we present a survey instrument, the Groundwater Concept Inventory (GWCI), that has been designed for general audiences to measure groundwater knowledge comparable to that in an introductory geoscience curriculum. The GWCI was developed using ∼1200 responses using an online platform, Amazon Mechanical Turks, to represent a general population. Responses were evaluated using the Rasch model that configures a relationship between person-ability and item-difficulty. We found that the study population displayed similar misconceptions about groundwater compared with previous literature, and that age and education were not strong predictors of GWCI scores. The GWCI can be used by researchers to understand links between knowledge and behavior, and also by other stakeholders to quantify misconceptions about groundwater and target resources for a more informed public.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"62 4","pages":"591-604"},"PeriodicalIF":2.0,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138814054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating Flow Distribution in a Multiaquifer Recharge Well Using an In Situ Flowmeter 使用原位流量计评估多含水层补给井中的流量分布。
IF 2 4区 地球科学
Groundwater Pub Date : 2023-12-12 DOI: 10.1111/gwat.13379
Meredith B. Martinez, Mark A. Widdowson
{"title":"Evaluating Flow Distribution in a Multiaquifer Recharge Well Using an In Situ Flowmeter","authors":"Meredith B. Martinez,&nbsp;Mark A. Widdowson","doi":"10.1111/gwat.13379","DOIUrl":"10.1111/gwat.13379","url":null,"abstract":"<p>Quantifying the flow rate distribution in a multiple-screen recharge well is relevant to understanding groundwater flow and solute transport behavior in managed aquifer recharge (MAR) operations. In this study, an impeller flowmeter was deployed to measure flow rate distribution in a multiple-screen MAR well under both recharge and pumping conditions screened in the multiple-strata of the Virginia Coastal Plain aquifer system. Preferential flow distribution in the well was observed through the uppermost screens during recharge while flow distribution was more evenly distributed along all screens under pumping conditions. Analysis of flow along individual screens also indicates preferential flow to the upper part of the screen during both recharge and pumping. Comparison of flowmeter results under both recharge and pumping conditions to previous site-specific measurements suggests that the distribution of flow may vary with time, depending on well screen condition and well rehabilitation efforts, and should be monitored over the duration of an MAR project. These results have implications for groundwater quality given that flow distribution in a multiscreen recharge well has profound impact on travel time and on transport modeling if flow is assumed to be steady and consistent under a range of operational conditions.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"62 4","pages":"605-616"},"PeriodicalIF":2.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gwat.13379","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138814006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Iterative Method of Modeling Pump-Treat-Inject System with “Partial Treatment” 用 "部分处理 "对泵-处理-注入系统建模的迭代法
IF 2 4区 地球科学
Groundwater Pub Date : 2023-12-07 DOI: 10.1111/gwat.13377
Jim Zhang, Yiding Zhang, Franklin W. Schwartz, Massoud Karimi
{"title":"An Iterative Method of Modeling Pump-Treat-Inject System with “Partial Treatment”","authors":"Jim Zhang,&nbsp;Yiding Zhang,&nbsp;Franklin W. Schwartz,&nbsp;Massoud Karimi","doi":"10.1111/gwat.13377","DOIUrl":"10.1111/gwat.13377","url":null,"abstract":"<p>Pump-and-treat technologies are widely used in groundwater remediation and site cleanup. Such technologies involve pumping contaminated groundwater to the surface for treatment. Following treatment, the water is often reinjected back into the aquifer (referred to as pump-treat-inject or PTI) for potential reuse. The treatment system is often designed to remove dissolved-phase contaminants in groundwater such that water meets applicable cleanup standards (herein referred to as “full treatment”). However, in some cases, the treatment system may not effectively reduce the dissolved-phase concentrations (herein referred to as “partial treatment”) for some of the contaminants present in groundwater. Modeling PTI under partial treatment conditions is challenging because contaminant concentrations in injected water depend on the pumped water concentrations and the system treatment efficiency. Essentially, the injected water concentration (a transport model input) is unknown prior to transport simulation. This study presents a novel iterative approach to modeling PTI under partial treatment scenarios, where the injected water concentration is linked to the modeled pumped water concentration. The method was developed for a complicated three-dimensional (3D) flow and transport modeling study conducted for a confidential remediation site where PTI with partial treatment was applied. However, due to the complexity of the 3D model and the confidential information of the site, a simple two-dimensional (2D) numerical model is presented to demonstrate the iterative method. The 2D model test runs and the 3D model application in a remediation site showed that the iterative simulation results quickly converged to a viable final solution.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"62 5","pages":"795-803"},"PeriodicalIF":2.0,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138554822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New Insights into the Formation and Properties of Wellbore Skin: Why We Have to Rethink the Concept 对井筒表皮的形成和性质有了新的认识——为什么我们必须重新思考这个概念。
IF 2 4区 地球科学
Groundwater Pub Date : 2023-12-01 DOI: 10.1111/gwat.13370
Georg J. Houben, Axel Lamparter, Kristian Ufer, Christin Damian, Daniel Boz
{"title":"New Insights into the Formation and Properties of Wellbore Skin: Why We Have to Rethink the Concept","authors":"Georg J. Houben,&nbsp;Axel Lamparter,&nbsp;Kristian Ufer,&nbsp;Christin Damian,&nbsp;Daniel Boz","doi":"10.1111/gwat.13370","DOIUrl":"10.1111/gwat.13370","url":null,"abstract":"<p>The deposition of fine-grained material of low permeability on the borehole wall during drilling (wellbore skin) is a common problem affecting the operation and efficiency of water wells. Here, we present new data and novel insights from four excavated dewatering wells from a lignite surface mine. All wells have the same age, are of similar construction, and were sampled at two different depths each. The thickness of the skin layer increases with depth. Its composition and permeability is strongly influenced by the surrounding aquifer material. Nonuniform sediments of low permeability result in less permeable wellbore skin deposits. The presence of discontinuities in the skin layer may be a determining feature for the resulting flow to wells, especially with skin layers of low permeability. The presence of naturally occurring swelling clay (smectite) provides the skin layer with a significant self-sealing capacity.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"62 4","pages":"548-559"},"PeriodicalIF":2.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gwat.13370","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138471425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Groundwater for People and the Environment: A Globally Threatened Resource 地下水对人类和环境的影响:一种受到全球威胁的资源。
IF 2.6 4区 地球科学
Groundwater Pub Date : 2023-11-21 DOI: 10.1111/gwat.13376
Hugo A. Loaiciga, Ryan Doh
{"title":"Groundwater for People and the Environment: A Globally Threatened Resource","authors":"Hugo A. Loaiciga,&nbsp;Ryan Doh","doi":"10.1111/gwat.13376","DOIUrl":"10.1111/gwat.13376","url":null,"abstract":"<p>The intensity of global groundwater use rose from 124 m<sup>3</sup> per capita in 1950 to 152 m<sup>3</sup> in 2021, for a 22.6% rise in the annual per capita use. This rise in global per capita water use reflects rising consumption patterns. The global use of groundwater, which provides between 21% and 30% of the total freshwater annual consumption, will continue to expand due to the sustained population growth projected through most of the 21st century and the important role that groundwater plays in the water-food-energy nexus. The rise in groundwater use, on the other hand, has inflicted adverse impacts in many aquifers, such as land subsidence, sea water intrusion, stream depletion, and deterioration of groundwater-dependent ecosystems, groundwater-quality degradation, and aridification. This paper projects global groundwater use between 2025 and 2050. The projected global annual groundwater withdrawal in 2050 is 1535 km<sup>3</sup> (1 km<sup>3</sup> = 10<sup>9</sup> m<sup>3</sup> = 810,713 acre-feet). The projected global groundwater depletion, that is, the excess of withdrawal over recharge, in 2050 equals 887 km<sup>3</sup>, which is about 61% larger than in 2021. This projection signals probable exacerbation of adverse groundwater-withdrawal impacts, which are worsened by climatic trends and the environmental requirement of groundwater flow unless concerted national and international efforts achieve groundwater sustainability.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"62 3","pages":"332-340"},"PeriodicalIF":2.6,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gwat.13376","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138292631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Type and Shape of Microplastics on the Transport in Column Experiments 微塑料种类和形状对塔中输运的影响
IF 2 4区 地球科学
Groundwater Pub Date : 2023-11-20 DOI: 10.1111/gwat.13375
Cheyanne A. Schenkel, Megan R.M. Brown, Melissa E. Lenczewski
{"title":"Impact of Type and Shape of Microplastics on the Transport in Column Experiments","authors":"Cheyanne A. Schenkel,&nbsp;Megan R.M. Brown,&nbsp;Melissa E. Lenczewski","doi":"10.1111/gwat.13375","DOIUrl":"10.1111/gwat.13375","url":null,"abstract":"<p>The pervasive nature of plastic and the longevity of plastics leaves a legacy of microplastics (MPs) that contaminate our environment, including drinking water sources. Although MPs have been documented in every environmental setting, a paucity of research has focused on the transport and fate of MPs in groundwater. Previous field and laboratory studies have shown that MPs can migrate through aquifer material and are influenced by environmental factors. This study used controlled column experiments to investigate the influence of polymer type (polyamide, polyethylene, polypropylene, and polyester) and particle shape (fragment, fiber, and sphere) on MP retardation and retention. The results showed that all individual MP types investigated were retarded compared to the NaCl tracer, with a retardation factor ranging from 1.53 to 1.75. While hypothesized that presence of multiple types and shapes could change mobility, the results indicate that this hypothesis is not correct for the conditions tested. This study provides new insights into MP transport in groundwater systems based on the characteristics of MP particles. In addition, this study demonstrates the need for further research on types of MPs and under more conditions, especially in the presence of a mixture of types and shapes of MPs to gauge what is occurring in natural systems where many MPs are present together.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"62 4","pages":"537-547"},"PeriodicalIF":2.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138178329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards Improved Remedial Outcomes in Categorical Aquifers with an Iterative Ensemble Smoother 使用迭代集成平滑器改进分类含水层的修复效果。
IF 2.6 4区 地球科学
Groundwater Pub Date : 2023-11-09 DOI: 10.1111/gwat.13369
Prashanth Khambhammettu, Philippe Renard, John Doherty, Jeremy White, Marc Killingstad, Michael Kladias
{"title":"Towards Improved Remedial Outcomes in Categorical Aquifers with an Iterative Ensemble Smoother","authors":"Prashanth Khambhammettu,&nbsp;Philippe Renard,&nbsp;John Doherty,&nbsp;Jeremy White,&nbsp;Marc Killingstad,&nbsp;Michael Kladias","doi":"10.1111/gwat.13369","DOIUrl":"10.1111/gwat.13369","url":null,"abstract":"<p>Categorical parameter distributions consisting of geologic facies with distinct properties, for example, high-permeability channels embedded in a low-permeability matrix, are common at contaminated sites. At these sites, low-permeability facies store solute mass, acting as secondary sources to higher-permeability facies, sustaining concentrations for decades while increasing risk and cleanup costs. Parameter estimation is difficult in such systems because the discontinuities in the parameter space hinder the inverse problem. This paper presents a novel approach based on Traveling Pilot Points (TRIPS) and an iterative ensemble smoother (IES) to solve the categorical inverse problem. Groundwater flow and solute transport in a hypothetical aquifer with a categorical parameter distribution are simulated using MODFLOW 6. Heads and concentrations are recorded at multiple monitoring locations. IES is used to generate posterior ensembles assuming a TRIPS prior and an approximate multi-Gaussian prior. The ensembles are used to predict solute concentrations and mass into the future. The evaluation also includes an assessment of how the number of measurements and the choice of the geological prior determine the characteristics of the posterior ensemble and the resulting predictions. The results indicate that IES was able to efficiently sample the posterior distribution and showed that even with an approximate geological prior, a high degree of parameterization and history matching could lead to parameter ensembles that can be useful for making certain types of predictions (heads, concentrations). However, the approximate geological prior was insufficient for predicting mass. The analysis demonstrates how decision-makers can quantify uncertainty and make informed decisions with an ensemble-based approach.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"62 1","pages":"60-74"},"PeriodicalIF":2.6,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72016500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Delineation of a PFOA Plume and Assessment of Data Gaps in its Conceptual Model Using PlumeSeeker™ 使用PlumeSeekerTM绘制全氟辛烷磺酸羽流并评估其概念模型中的数据差距。
IF 2.6 4区 地球科学
Groundwater Pub Date : 2023-11-06 DOI: 10.1111/gwat.13373
Metin Ozbek, Nathan Voorhies, Lucas Howard, Ryan Swanson, Tad Fox
{"title":"Delineation of a PFOA Plume and Assessment of Data Gaps in its Conceptual Model Using PlumeSeeker™","authors":"Metin Ozbek,&nbsp;Nathan Voorhies,&nbsp;Lucas Howard,&nbsp;Ryan Swanson,&nbsp;Tad Fox","doi":"10.1111/gwat.13373","DOIUrl":"10.1111/gwat.13373","url":null,"abstract":"<p>An accurate conceptual site model (CSM) and plume-delineation at contamination sites are pre-requisites for successful remediation and for satisfying regulators and stakeholders. PlumeSeeker™ is well-suited for assessing data gaps in CSMs by using available site data and for identifying the optimal number and locations of sampling locations to delineate contaminant plumes. It is an enhancement of a university research code for plume delineation using geostatistical and stochastic modeling integrated with the groundwater modeling software MODFLOW-SURFACT™. PlumeSeeker™ increases the overall confidence in the location of the plume boundary through a variance-reduction approach that selects existing- or new monitoring wells for sampling based on minimizing the uncertainty in plume boundary and on new field information. Applicable at sites with or without existing monitoring wells, PlumeSeeker™ is particularly powerful for optimally allocating project resources (labor, well installation, and laboratory costs) between existing wells and sampling at new locations. An application of PlumeSeeker™ at Lakehurst, the naval component of Joint Base McGuire-Dix-Lakehurst in New Jersey, demonstrates how the cost of delineating the migration pathway of a perfluorooctanoic acid (PFOA) plume can be minimized by requiring only 9 new sampling locations in addition to samples from 2 existing wells for achieving a 70% reduction in plume uncertainty. In addition, the use of available site data in three different scenarios identified CSM data-gaps in the source area and in the interaction between Manapaqua Branch and groundwater, where the observed high concentration in this area could have resulted from a combination of groundwater migration and induced infiltration.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"62 1","pages":"44-59"},"PeriodicalIF":2.6,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71490378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Borehole Nuclear Magnetic Resonance Estimation of Specific Yield in a Fractured Granite Aquifer 裂隙花岗岩含水层中特定产量的钻孔核磁共振估算。
IF 2 4区 地球科学
Groundwater Pub Date : 2023-11-06 DOI: 10.1111/gwat.13374
Stephanie N. Phillips, Bradley Carr, Ye Zhang, Brady Flinchum, Shuangpo Ren
{"title":"Borehole Nuclear Magnetic Resonance Estimation of Specific Yield in a Fractured Granite Aquifer","authors":"Stephanie N. Phillips,&nbsp;Bradley Carr,&nbsp;Ye Zhang,&nbsp;Brady Flinchum,&nbsp;Shuangpo Ren","doi":"10.1111/gwat.13374","DOIUrl":"10.1111/gwat.13374","url":null,"abstract":"<p>In this study, we introduce a novel field-based method to estimate specific yield (<i>S</i><sub>y</sub>) in fractured, low-porosity granite aquifers using borehole nuclear magnetic resonance (bNMR). This method requires collecting a bNMR survey immediately following a pump test, which dewaters the near-borehole fractures. The residual water content measured from bNMR is interpreted as “bound” and represents the specific retention (<i>S</i><sub>r</sub>) while the water drained by the pump is the <i>S</i><sub>y</sub>. The transverse relaxation cutoff time (<i>T</i><sub>2C</sub>) is the length of time that partitions the total porosity measured by bNMR into <i>S</i><sub>r</sub> and <i>S</i><sub>y</sub>. When applying a calibrated <i>T</i><sub>2C</sub>, <i>S</i><sub>y</sub> equals the bNMR total porosity minus <i>S</i><sub>r</sub>; thus, a calibrated <i>T</i><sub>2C</sub> is required to determine <i>S</i><sub>y</sub> directly from NMR results. Based on laboratory experiments on sandstone cores, the default <i>T</i><sub>2C</sub> is 33 ms; however, its applicability to fractured granite aquifers is uncertain. The optimal <i>T</i><sub>2C</sub> based on our pumping test is 110 ± 25 ms. Applying this calibrated <i>T</i><sub>2C</sub> on a saturated, A-type granite at our field site, we estimate the <i>S</i><sub>y</sub> to be 0.012 ± 0.005 m<sup>3</sup> m<sup>−3</sup> which is significantly different from the <i>S</i><sub>y</sub> (0.021 ± 0.005 m<sup>3</sup> m<sup>−3</sup>) estimate using the default <i>T</i><sub>2C</sub> of 33 ms. This <i>S</i><sub>y</sub> estimate falls within a range determined using traditional hydraulic testing at the same site. Using the conventional <i>T</i><sub>2C</sub> (33 ms) for fractured granite leads to an inaccurate <i>S</i><sub>y</sub>; therefore, it is essential to calibrate the bNMR <i>T</i><sub>2C</sub> for the local site conditions prior to estimating <i>S</i><sub>y</sub>.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"62 4","pages":"578-590"},"PeriodicalIF":2.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71490377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogeochemical Evaluation of Aquifer Storage and Recovery in Edwards Aquifer, New Braunfels, Texas 德克萨斯州新布朗费尔斯Edwards含水层蓄水和恢复的水文地球化学评价。
IF 2 4区 地球科学
Groundwater Pub Date : 2023-11-05 DOI: 10.1111/gwat.13372
Christophe Wakamya Simbo
{"title":"Hydrogeochemical Evaluation of Aquifer Storage and Recovery in Edwards Aquifer, New Braunfels, Texas","authors":"Christophe Wakamya Simbo","doi":"10.1111/gwat.13372","DOIUrl":"10.1111/gwat.13372","url":null,"abstract":"<p>This study examines the potential for aquifer storage and recovery (ASR) in the brackish portion of the Edwards aquifer in New Braunfels, Texas. Successful ASR relies on understanding hydraulic properties, aquifer heterogeneity, water geochemistry, and geochemical processes during operations. The research aims to investigate the chemistries of native groundwater and injectant during ASR operation, estimate the hydraulic properties of the aquifer layers, and assess the recovery rate for the recovered groundwater meeting the total dissolved solids (TDS) threshold. The study found that native groundwater is of Na-Cl facies due to halite dissolution and a possible basinal brine migration associated with the zone of greatest fault displacement. High sulfate ions in background native groundwater result from sulfate-bearing minerals' dissolution in the Kainer and Person Formations. The injectant water is of Ca-Mg-HCO<sub>3</sub> facies due to the carbonate-rich composition of the aquifer host matrix and interaction with the Guadalupe River riverbed. During ASR operations, mixing controlled the shift in hydrochemical facies from Na-Cl to Ca-Mg-HCO<sub>3</sub>.The study also suggests a possible connection between Kainer and Person Formations and preferential pathways in the targeted storage zone aquifer. The estimated conductivity values also indicate dominant horizontal flow via possible fracture pathways in both the Person and Kainer Formation storage zones. Recovery of groundwater meeting the TDS of 1000 mg/L requires a recovery rate of 0.03 m<sup>3</sup>/s for 60 days after 40-day storage. This research emphasizes that understanding the hydrogeological conditions and geochemical processes is critical to ASR feasibility in brackish carbonate multi-aquifer fractured systems.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"62 4","pages":"560-577"},"PeriodicalIF":2.0,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gwat.13372","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71490379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信