GroundwaterPub Date : 2024-09-23DOI: 10.1111/gwat.13442
Ronny Figueroa, Etienne Bresciani
{"title":"A Close-to-Optimal Discretization Strategy for Pumping Test Numerical Simulation","authors":"Ronny Figueroa, Etienne Bresciani","doi":"10.1111/gwat.13442","DOIUrl":"10.1111/gwat.13442","url":null,"abstract":"<p>Numerical modeling offers a valuable alternative to analytical solutions for pumping test analysis. However, little is known about how discretization impacts results accuracy and runtime. This study presents a systematic method for defining the spatiotemporal discretization of pumping test numerical models based on dimensionless parameters. Two types of analysis are considered: one where observations are made in the pumping well, and another one where observations are made in different wells. The influence of the discretization parameters on results accuracy and runtime is investigated and an optimal set of parameters is determined that minimizes runtime while maintaining the maximum error under 1% for an “average” aquifer. Lower runtimes are achieved when the analysis focuses on the pumping well, which is attributed to the steady-state analytical solution approximating drawdown in the well in the numerical scheme employed. Additional tests demonstrate the robustness of the derived set of parameters in different configurations.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"63 1","pages":"105-115"},"PeriodicalIF":2.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142304684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GroundwaterPub Date : 2024-09-18DOI: 10.1111/gwat.13441
John P. McDonald
{"title":"Pressure Transducer Measurement Variability in Deep Wells Screened Across the Water Table","authors":"John P. McDonald","doi":"10.1111/gwat.13441","DOIUrl":"10.1111/gwat.13441","url":null,"abstract":"<p>Automated water level measurements collected using vented pressure transducers in deep wells screened across the water table may exhibit a greater response to barometric pressure changes than the true water level. The cause was hypothesized to be disequilibrium in barometric pressure between the wellbores and land surface due to air exchange with the deep vadose zone. In this study, vented and nonvented pressure transducers were installed and operated simultaneously in two deep wells screened across the water table. A vent tube open to the atmosphere at land surface allowed for barometric compensation of the vented transducers. Two nonvented transducers were installed in each well, one submerged in the water and one above the water surface. The difference in readings allowed for barometric compensation. Manual measurements were also collected. It was confirmed that measurements from the vented transducers exhibited greater variability in response to barometric pressure changes than the nonvented transducers and manual measurements. Comparison of the downhole barometric pressure measurements to values from a nearby meteorology station showed the response in the wells to changes in barometric pressure was time-lagged and attenuated. Thus, the reference pressure from land surface supplied to the vented transducers was not representative of the air pressure within the wells. This caused fluctuations of the transducer readings in response to barometric pressure changes to be greater than the true water level change. This issue can be resolved by the use of nonvented pressure transducers.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"63 2","pages":"220-230"},"PeriodicalIF":2.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GroundwaterPub Date : 2024-08-16DOI: 10.1111/gwat.13432
Mark Bakker, Bram Bot
{"title":"The Effective Vertical Anisotropy of Layered Aquifers","authors":"Mark Bakker, Bram Bot","doi":"10.1111/gwat.13432","DOIUrl":"10.1111/gwat.13432","url":null,"abstract":"<p>Many sedimentary aquifers consist of small layers of coarser and finer material. When groundwater flow in these aquifers is modeled, the hydraulic conductivity may be simulated as homogeneous but anisotropic throughout the aquifer. In practice, the anisotropy factor, the ratio of the horizontal divided by the vertical hydraulic conductivity, is often set to 10. Here, numerical experiments are conducted to determine the effective anisotropy of an aquifer consisting of 400 horizontal layers of which the homogeneous and isotropic hydraulic conductivity varies over two orders of magnitude. Groundwater flow is simulated to a partially penetrating canal and a partially penetrating well. Numerical experiments are conducted for 1000 random realizations of the 400 layers, by varying the sequence of the layers, not their conductivity. It is demonstrated that the effective anisotropy of the homogeneous model is a model parameter that depends on the flow field. For example, the effective anisotropy for flow to a partially penetrating canal differs from the effective anisotropy for flow to a partially penetrating well in an aquifer consisting of the exact same 400 layers. The effective anisotropy also depends on the sequence of the layers. The effective anisotropy values of the 1000 realizations range from roughly 5 to 50 for the considered situations. A factor of 10 represents a median value (a reasonable value to start model calibration for the conductivity variations considered here). The median is similar to the equivalent anisotropy, defined as the arithmetic mean of the hydraulic conductivities divided by the harmonic mean.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"63 1","pages":"68-75"},"PeriodicalIF":2.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697527/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141989743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GroundwaterPub Date : 2024-08-13DOI: 10.1111/gwat.13437
Karli M. Rogers, Jennifer B. Fair, Nathaniel P. Hitt, Karmann G. Kessler, Zachary A. Kelly, Martin Briggs
{"title":"Utility of an Instantaneous Salt Dilution Method for Measuring Streamflow in Headwater Streams","authors":"Karli M. Rogers, Jennifer B. Fair, Nathaniel P. Hitt, Karmann G. Kessler, Zachary A. Kelly, Martin Briggs","doi":"10.1111/gwat.13437","DOIUrl":"10.1111/gwat.13437","url":null,"abstract":"<p>Streamflow records are biased toward large streams and rivers, yet small headwater streams are often the focus of ecological research in response to climate change. Conventional flow measurement instruments such as acoustic Doppler velocimeters (ADVs) do not perform well during low-flow conditions in small streams, truncating the development of rating curves during critical baseflow conditions dominated by groundwater inflow. We revisited an instantaneous solute tracer injection method as an alternative to ADVs based on paired measurements to compare their precision, efficiency, and feasibility within headwater streams across a range of flow conditions. We show that the precision of discharge measurements using salt dilution by slug injection and ADV methods were comparable overall, but salt dilution was more precise during the lowest flows and required less time to implement. Often, headwater streams were at or below the depth threshold where ADV measurements could even be attempted and transects were complicated by coarse bed material and cobbles. We discuss the methodological benefits and limitations of salt dilution by slug injection and conclude that the method could facilitate a proliferation of streamflow observation across headwater stream networks that are highly undersampled compared to larger streams.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"63 1","pages":"80-92"},"PeriodicalIF":2.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141972481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical Modeling of Recovery of Moisture from the Unsaturated Zone: A Feasibility Study","authors":"Amitabha Mukhopadhyay, Adnan Akber, Harish Bhandary","doi":"10.1111/gwat.13436","DOIUrl":"10.1111/gwat.13436","url":null,"abstract":"<p>Numerical modeling of the recovery of moisture by injecting warm air in the unsaturated zone in a 100 m × 100 m plot of agricultural land in Kuwait, a country located in an arid environment, was conducted to provide “proof of concept” of the technique. If technically and economically feasible, it will be a potential additional source of water that could be exploited for farming activities and other uses. The COMSOL software was used to develop the model and, based on the results of the scenario runs, the effects of different hydraulic and operational parameters, including that of well spacing, on moisture recovery were assessed. In general, the results suggested that the recovery should increase with the increase in the hydraulic conductivity of the unsaturated zone, the amount of heat input, and the pressure differential between the unsaturated zone and the well head. Within the period examined (0 to 11 days), the recovery decreases with the increase in the soil moisture content, possibly due to the fall in relative permeability to moisture-rich air with the increased water contents in the pore spaces, although the effects may change over a longer period as water contents decrease with moisture recovery. The moisture recovery from the unsaturated zone through the injection of warm air appears to be a feasible proposition from this study that should be demonstrated through a pilot scale experiment in the field.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"63 1","pages":"116-129"},"PeriodicalIF":2.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced Removal of Brine From Porous Structures by Supercritical CO2","authors":"Iris Beatriz Vega Erramuspe, Osei Asafu-Adjaye, Melissa Rojas-Márquez, Brian Via, Bhima Sastri, Sujit Banerjee","doi":"10.1111/gwat.13434","DOIUrl":"10.1111/gwat.13434","url":null,"abstract":"<p>Supercritical CO<sub>2</sub> (sCO<sub>2</sub>) removes water from brine held in pumice stone at levels well above the solubility of water in sCO<sub>2</sub>. The higher water removal results from a combination of passive emulsification of water in sCO<sub>2</sub> and viscous fingering of sCO<sub>2</sub> through the saturated pumice. This leads to higher levels of salt deposition than that expected from solubility considerations alone. These deposits could impact the injectivity of sCO<sub>2</sub> as well as its movement in the subsurface. The finding that the water concentration in sCO<sub>2</sub> is not necessarily capped at the solubility limit should influence the parametrization of injection models.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"63 1","pages":"76-79"},"PeriodicalIF":2.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141753571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GroundwaterPub Date : 2024-07-23DOI: 10.1111/gwat.13433
Michael N. Fienen, Jeremy T. White, Mohamed Hayek
{"title":"Parameter ESTimation With the Gauss–Levenberg–Marquardt Algorithm: An Intuitive Guide","authors":"Michael N. Fienen, Jeremy T. White, Mohamed Hayek","doi":"10.1111/gwat.13433","DOIUrl":"10.1111/gwat.13433","url":null,"abstract":"<p>In this paper, we review the derivation of the Gauss–Levenberg–Marquardt (GLM) algorithm and its extension to ensemble parameter estimation. We explore the use of graphical methods to provide insights into how the algorithm works in practice and discuss the implications of both algorithm tuning parameters and objective function construction in performance. Some insights include understanding the control of both parameter trajectory and step size for GLM as a function of tuning parameters. Furthermore, for the iterative Ensemble Smoother (iES), we discuss the importance of noise on observations and show how iES can cope with non-unique outcomes based on objective function construction. These insights are valuable for modelers using PEST, PEST++, or similar parameter estimation tools.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"63 1","pages":"93-104"},"PeriodicalIF":2.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141750101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GroundwaterPub Date : 2024-07-04DOI: 10.1111/gwat.13425
Bwalya Malama, Ying-Fan Lin, Kristopher L. Kuhlman
{"title":"Semi-Analytical Modeling of Transient Stream Drawdown and Depletion in Response to Aquifer Pumping","authors":"Bwalya Malama, Ying-Fan Lin, Kristopher L. Kuhlman","doi":"10.1111/gwat.13425","DOIUrl":"10.1111/gwat.13425","url":null,"abstract":"<p>Analytical and semi-analytical models for stream depletion with transient stream stage drawdown induced by groundwater pumping are developed to address a deficiency in existing models, namely, the use of a fixed stream stage condition at the stream–aquifer interface. Field data are presented to demonstrate that stream stage drawdown does indeed occur in response to groundwater pumping near aquifer-connected streams. A model that predicts stream depletion with transient stream drawdown is developed based on stream channel mass conservation and finite stream channel storage. The resulting models are shown to reduce to existing fixed-stage models in the limit as stream channel storage becomes infinitely large, and to the confined aquifer flow with a no-flow boundary at the streambed in the limit as stream storage becomes vanishingly small. The model is applied to field measurements of aquifer and stream drawdown, giving estimates of aquifer hydraulic parameters, streambed conductance, and a measure of stream channel storage. The results of the modeling and data analysis presented herein have implications for sustainable groundwater management.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"62 6","pages":"904-919"},"PeriodicalIF":2.0,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GroundwaterPub Date : 2024-06-28DOI: 10.1111/gwat.13428
Hiroko M. Hort, Clare E. Robinson, Audrey H. Sawyer, Yue Li, Rebecca Cardoso, Sophia A. Lee, Douglas Roff, David T. Adamson, Charles J. Newell
{"title":"Conceptualizing Controlling Factors for PFAS Salting Out in Groundwater Discharge Zones Along Sandy Beaches","authors":"Hiroko M. Hort, Clare E. Robinson, Audrey H. Sawyer, Yue Li, Rebecca Cardoso, Sophia A. Lee, Douglas Roff, David T. Adamson, Charles J. Newell","doi":"10.1111/gwat.13428","DOIUrl":"10.1111/gwat.13428","url":null,"abstract":"<p>Understanding fate and transport processes for per- and poly-fluoroalkyl substances (PFAS) is critical for managing impacted sites. “PFAS Salting Out” in groundwater, defined herein, is an understudied process where PFAS in fresh groundwater mixes with saline groundwater near marine shorelines, which increases sorption of PFAS to aquifer solids. While sorption reduces PFAS mass discharge to marine surface water, the fraction that sorbs to beach sediments may be mobilized under future salinity changes. The objective of this study was to conceptually explore the potential for PFAS Salting Out in sandy beach environments and to perform a preliminary broad-scale characterization of sandy shoreline areas in the continental U.S. While no site-specific PFAS data were collected, our conceptual approach involved developing a multivariate regression model that assessed how tidal amplitude and freshwater submarine groundwater discharge affect the mixing of fresh and saline groundwater in sandy coastal aquifers. We then applied this model to 143 U.S. shoreline areas with sandy beaches (21% of total beaches in the USA), indirectly mapping potential salinity increases in shallow freshwater PFAS plumes as low (<10 ppt), medium (10–20 ppt), or high (>20 ppt) along groundwater flow paths before reaching the ocean. Higher potential salinity increases were observed in West Coast bays and the North Atlantic coastline, due to the combination of moderate to large tides and large fresh groundwater discharge rates, while lower increases occurred along the Gulf of Mexico and the southern Florida Atlantic coast. The salinity increases were used to estimate potential perfluorooctane sulfonic acid (PFOS) sorption in groundwater due to salting out processes. Low-category shorelines may see a 1- to 2.5-fold increase in sorption of PFOS, medium-category a 2.0- to 6.4-fold increase, and high-category a 3.8- to 25-fold increase in PFOS sorption. The analysis presented provides a first critical step in developing a large-scale approach to classify the PFAS Salting Out potential along shorelines and the limitations of the approach adopted highlights important areas for further research.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"62 6","pages":"860-875"},"PeriodicalIF":2.0,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141473857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GroundwaterPub Date : 2024-06-27DOI: 10.1111/gwat.13424
Georgios Kourakos, Rich Pauloo, Thomas Harter
{"title":"An Imputation Method for Simulating 3D Well Screen Locations from Limited Regional Well Log Data","authors":"Georgios Kourakos, Rich Pauloo, Thomas Harter","doi":"10.1111/gwat.13424","DOIUrl":"10.1111/gwat.13424","url":null,"abstract":"<p>In groundwater modeling studies, accurate spatial and intensity identification of water sources and sinks is of critical importance. Precise construction data about wells (water sinks) are particularly difficult to obtain. The collection of well log data is expensive and laborious, and government records of historic well log data are often imprecise and incomplete with respect to the precise location or pumping rate. In many groundwater modeling studies, such as groundwater quality assessments, a precise representation of the horizontal and vertical distribution of well screens is required to accurately estimate contaminant breakthrough curves. The number of wells under consideration may be very large, for example, in the assessment of nonpoint source pollution. In this paper, we propose an imputation framework that allows for proper reconstruction of missing well data. Our approach exploits available information and tolerates data gaps and imprecisions. We demonstrate the value of this method for a subregion of the Central Valley aquifer (California, USA). We show that our framework imputes missing values that preserve statistical properties of available data and that remain consistent with the known spatial distribution of well screens and pumping rates in the three-dimensional aquifer system.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"62 6","pages":"920-933"},"PeriodicalIF":2.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gwat.13424","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141461357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}