{"title":"Numerical Modeling of Recovery of Moisture from the Unsaturated Zone: A Feasibility Study","authors":"Amitabha Mukhopadhyay, Adnan Akber, Harish Bhandary","doi":"10.1111/gwat.13436","DOIUrl":null,"url":null,"abstract":"<p>Numerical modeling of the recovery of moisture by injecting warm air in the unsaturated zone in a 100 m × 100 m plot of agricultural land in Kuwait, a country located in an arid environment, was conducted to provide “proof of concept” of the technique. If technically and economically feasible, it will be a potential additional source of water that could be exploited for farming activities and other uses. The COMSOL software was used to develop the model and, based on the results of the scenario runs, the effects of different hydraulic and operational parameters, including that of well spacing, on moisture recovery were assessed. In general, the results suggested that the recovery should increase with the increase in the hydraulic conductivity of the unsaturated zone, the amount of heat input, and the pressure differential between the unsaturated zone and the well head. Within the period examined (0 to 11 days), the recovery decreases with the increase in the soil moisture content, possibly due to the fall in relative permeability to moisture-rich air with the increased water contents in the pore spaces, although the effects may change over a longer period as water contents decrease with moisture recovery. The moisture recovery from the unsaturated zone through the injection of warm air appears to be a feasible proposition from this study that should be demonstrated through a pilot scale experiment in the field.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"63 1","pages":"116-129"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gwat.13436","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groundwater","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gwat.13436","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Numerical modeling of the recovery of moisture by injecting warm air in the unsaturated zone in a 100 m × 100 m plot of agricultural land in Kuwait, a country located in an arid environment, was conducted to provide “proof of concept” of the technique. If technically and economically feasible, it will be a potential additional source of water that could be exploited for farming activities and other uses. The COMSOL software was used to develop the model and, based on the results of the scenario runs, the effects of different hydraulic and operational parameters, including that of well spacing, on moisture recovery were assessed. In general, the results suggested that the recovery should increase with the increase in the hydraulic conductivity of the unsaturated zone, the amount of heat input, and the pressure differential between the unsaturated zone and the well head. Within the period examined (0 to 11 days), the recovery decreases with the increase in the soil moisture content, possibly due to the fall in relative permeability to moisture-rich air with the increased water contents in the pore spaces, although the effects may change over a longer period as water contents decrease with moisture recovery. The moisture recovery from the unsaturated zone through the injection of warm air appears to be a feasible proposition from this study that should be demonstrated through a pilot scale experiment in the field.
期刊介绍:
Ground Water is the leading international journal focused exclusively on ground water. Since 1963, Ground Water has published a dynamic mix of papers on topics related to ground water including ground water flow and well hydraulics, hydrogeochemistry and contaminant hydrogeology, application of geophysics, groundwater management and policy, and history of ground water hydrology. This is the journal you can count on to bring you the practical applications in ground water hydrology.