Greenhouse Gases: Science and Technology最新文献

筛选
英文 中文
Downdraft energy tower for negative emissions: Analysis on methane removal and other co-benefits 负排放的下吸式能源塔:甲烷去除和其他协同效益分析
IF 2.2 4区 环境科学与生态学
Greenhouse Gases: Science and Technology Pub Date : 2023-06-30 DOI: 10.1002/ghg.2233
Tao Tao, Yuyin Wang, Tingzhen Ming, Liwen Mu, Renaud de Richter, Wei Li
{"title":"Downdraft energy tower for negative emissions: Analysis on methane removal and other co-benefits","authors":"Tao Tao,&nbsp;Yuyin Wang,&nbsp;Tingzhen Ming,&nbsp;Liwen Mu,&nbsp;Renaud de Richter,&nbsp;Wei Li","doi":"10.1002/ghg.2233","DOIUrl":"10.1002/ghg.2233","url":null,"abstract":"<p>The downdraft energy tower is proposed in research as a new technology for green electricity in recent years. In this work, it is analyzed as an emerging greenhouse gas removal technology against climate change that provides multiple co-benefits for the environment, in addition to green electricity. Compared to other negative emission technologies, DET might be able to remove atmospheric methane (CH<sub>4</sub>) without adding additional equipment, materials or costs. In multiple case studies, the DET offers at least 15% increase in profit thanks to CH<sub>4</sub> removal in addition to green electricity generation. © 2023 The Authors. <i>Greenhouse Gases: Science and Technology</i> published by Society of Chemical Industry and John Wiley &amp; Sons Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"13 5","pages":"713-720"},"PeriodicalIF":2.2,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ghg.2233","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43605289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogen Purification through a Membrane–Cryogenic Integrated Process: A 3 E’s (Energy, Exergy, and Economic) Assessment 氢净化通过膜-低温一体化过程:a3e的(能源,能源和经济)评估
IF 2.2 4区 环境科学与生态学
Greenhouse Gases: Science and Technology Pub Date : 2023-06-27 DOI: 10.3390/gases3030006
Ahmad Naquash, Amjad Riaz, F. Yehia, Y. Chaniago, Hankwon Lim, Moonyong Lee
{"title":"Hydrogen Purification through a Membrane–Cryogenic Integrated Process: A 3 E’s (Energy, Exergy, and Economic) Assessment","authors":"Ahmad Naquash, Amjad Riaz, F. Yehia, Y. Chaniago, Hankwon Lim, Moonyong Lee","doi":"10.3390/gases3030006","DOIUrl":"https://doi.org/10.3390/gases3030006","url":null,"abstract":"Hydrogen (H2) is known for its clean energy characteristics. Its separation and purification to produce high-purity H2 is becoming essential to promoting a H2 economy. There are several technologies, such as pressure swing adsorption, membrane, and cryogenic, which can be adopted to produce high-purity H2; however, each standalone technology has its own pros and cons. Unlike standalone technology, the integration of technologies has shown significant potential for achieving high purity with a high recovery. In this study, a membrane–cryogenic process was integrated to separate H2 via the desublimation of carbon dioxide. The proposed process was designed, simulated, and optimized in Aspen Hysys. The results showed that the H2 was separated with a 99.99% purity. The energy analysis revealed a net-specific energy consumption of 2.37 kWh/kg. The exergy analysis showed that the membranes and multi-stream heat exchangers were major contributors to the exergy destruction. Furthermore, the calculated total capital investment of the proposed process was 816.2 m$. This proposed process could be beneficial for the development of a H2 economy.","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"28 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87968014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The effect of H2S content on acid gas migration and storage in shale reservoir by numerical simulation 数值模拟研究H2S含量对页岩油气藏酸性气运移和储集的影响
IF 2.2 4区 环境科学与生态学
Greenhouse Gases: Science and Technology Pub Date : 2023-06-27 DOI: 10.1002/ghg.2232
Xiaoyan Zhang, Ning Liu, Qi Li, Pingzhi Chen, Xiaochen Wei
{"title":"The effect of H2S content on acid gas migration and storage in shale reservoir by numerical simulation","authors":"Xiaoyan Zhang,&nbsp;Ning Liu,&nbsp;Qi Li,&nbsp;Pingzhi Chen,&nbsp;Xiaochen Wei","doi":"10.1002/ghg.2232","DOIUrl":"10.1002/ghg.2232","url":null,"abstract":"<p>Acid gas injection is one of the most effective strategies to deal with waste gas generated during the development of sour oil and gas reservoirs. This study numerically investigates the effect of H<sub>2</sub>S content on the acid gas migration and storage in shale reservoirs. The results indicate that the variations of acid gas density, viscosity, solubility, relative permeability, and capillary pressure caused by different H<sub>2</sub>S contents have great influence on the acid gas plume migration. When acid gas is in gas state, the maximum horizontal flow appears at the lower part of the reservoir after 5 years, and the horizontal migration distance first decreases and then remains unchanged with the increase of H<sub>2</sub>S content. Hereafter, the maximum horizontal migration distance appears at the top of the reservoir, and the horizontal migration distance first increases and then remains unchanged with the increase of H<sub>2</sub>S content. When acid gas is in liquid state, the maximum horizontal migration distance appears at the lower part of the reservoir in the early stage of injection. The horizontal migration distance decreases with the increase of H<sub>2</sub>S content. Subsequently, the maximum horizontal migration distance first decreases and then increases. The vertical migration distance increases gradually with the increase of H<sub>2</sub>S content until the acid gas reaches the top of the reservoir, and then the vertical migration distance remains unchanged. © 2023 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"13 5","pages":"634-658"},"PeriodicalIF":2.2,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47948760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential greenhouse gas emissions and reduction from municipal solid waste management in Phnom Penh municipality 金边市城市固体废物管理的潜在温室气体排放和减少
IF 2.2 4区 环境科学与生态学
Greenhouse Gases: Science and Technology Pub Date : 2023-06-09 DOI: 10.1002/ghg.2231
Dek Vimean Pheakdey, Nguyen Van Quan, Tran Dang Xuan
{"title":"Potential greenhouse gas emissions and reduction from municipal solid waste management in Phnom Penh municipality","authors":"Dek Vimean Pheakdey,&nbsp;Nguyen Van Quan,&nbsp;Tran Dang Xuan","doi":"10.1002/ghg.2231","DOIUrl":"10.1002/ghg.2231","url":null,"abstract":"<p>This study evaluates greenhouse gas (GHG) emissions and reduction potential from municipal solid waste management (MSWM) following the IPCC 2006 guidelines. Under different MSWM scenarios of Phnom Penh municipality, this study quantifies GHG emissions from transportation, open burning, composting, recycling, anaerobic digestion (AD), incineration, and landfilling municipal solid waste. The study also considers the GHG emissions avoided as a benefit of recycling and electricity generation from incineration and AD. Various waste separation rates are used to evaluate the effectiveness of source segregation in GHG mitigation. The results show that the most significant net GHG emission saving is under scenario 5, avoiding about 1.15 M kg CO<sub>2</sub>-eq/day with treatment affords 389 t/day of organic waste, 714 t/day of mixed recyclables, 777 t/day of digestible food waste, and 1,280 t/day of commingled waste via composting, recycling, AD, and incineration, respectively. The worst-case scenario represents the current MSWM method, which generates the highest GHG emissions of 3.13 M kg CO<sub>2</sub>-eq/day. This is due to the open burning of uncollected waste (211 t/day) and landfilling (2,835 t/day). Based on the analysis, an integrated MSWM system along with source separation for recycling and resource recovery purposes is highly recommended as it leads to the most significant reduction in environmental impacts. The findings of this study provide valuable insights into the practical implications of policy frameworks for MSWM, specifically in terms of GHG emissions reduction. © 2023 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"13 5","pages":"620-633"},"PeriodicalIF":2.2,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45917326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating nitrous oxide emissions based on TN discharge from municipal wastewater treatment plants: A case study for the city of Xiamen, China 基于城市污水处理厂总氮排放估算一氧化二氮排放量:以厦门市为例
IF 2.2 4区 环境科学与生态学
Greenhouse Gases: Science and Technology Pub Date : 2023-06-06 DOI: 10.1002/ghg.2230
Ruolin Bai, Lei Jin, Haiyan Fu, Mazhan Zhuang, Yi Wei
{"title":"Estimating nitrous oxide emissions based on TN discharge from municipal wastewater treatment plants: A case study for the city of Xiamen, China","authors":"Ruolin Bai,&nbsp;Lei Jin,&nbsp;Haiyan Fu,&nbsp;Mazhan Zhuang,&nbsp;Yi Wei","doi":"10.1002/ghg.2230","DOIUrl":"10.1002/ghg.2230","url":null,"abstract":"<p>Mitigation of nitrous oxide (N<sub>2</sub>O) emissions is of primary importance to meet the targets of reducing carbon footprints of wastewater treatment plants (WWTPs). This paper takes the N<sub>2</sub>O discharged from a case study of wastewater treatment plants as the main research object, and then develops a novel algorithm, which can accurately estimate the amount of N<sub>2</sub>O release, and then applies it to the local wastewater treatment plants. According to the results, the nitrous oxide emission flux and the emission factors (EFs) are discussed. The results include the following: (1) The total amount of N<sub>2</sub>O discharged from Xiamen wastewater treatment plants between 2018 and 2019 was 3881.29 kg and 3642.97 kg, respectively; (2) the production of N<sub>2</sub>O emissions based on the total nitrogen (TN) algorithm in the existing wastewater treatment factories in Xiamen was obtained based on the research EFs; and (3) by controlling other factors of WWTPs process such as chemical oxygen demand /nitrogen (COD)/ (N) ratio, dissolved oxygen (DO) concentration, pH value (the degree of concentration of hydrogen ions), and solids retention time (SRT) in the wastewater treatment process, selecting a secondary wastewater treatment process with an economical and reasonable approach can reduce N<sub>2</sub>O emissions in the wastewater treatment process. © 2023 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"13 5","pages":"699-712"},"PeriodicalIF":2.2,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43324889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The efficient CO2 fixation catalyzed by K-doped g-C3N4 catalyst for synthesizing benzimidazoles at atmospheric pressure 大气压下K掺杂g-C3N4催化剂催化合成苯并咪唑的高效CO2固定
IF 2.2 4区 环境科学与生态学
Greenhouse Gases: Science and Technology Pub Date : 2023-05-31 DOI: 10.1002/ghg.2222
Xuewei Tu, Luping Zhang, Yutong Chen, Shouxin Zhu, Can Sun, Jiali Jin, Min Liu, Hui Zheng
{"title":"The efficient CO2 fixation catalyzed by K-doped g-C3N4 catalyst for synthesizing benzimidazoles at atmospheric pressure","authors":"Xuewei Tu,&nbsp;Luping Zhang,&nbsp;Yutong Chen,&nbsp;Shouxin Zhu,&nbsp;Can Sun,&nbsp;Jiali Jin,&nbsp;Min Liu,&nbsp;Hui Zheng","doi":"10.1002/ghg.2222","DOIUrl":"https://doi.org/10.1002/ghg.2222","url":null,"abstract":"<p>The conversion of CO<sub>2</sub> into valuable chemicals to reduce greenhouse gas emissions has received extensive attention. Converting CO<sub>2</sub> into pharmaceutical intermediates via graphitic carbon nitride (CN) at atmospheric pressure is a challenge. In this work, a series of novel graphitic carbon nitrides (K-CN) catalysts with different doping ratios of K were synthesized by post-treatment of CN with KOH as a dopant under magnetic stirring. Herein, substrates of <i>o</i>-phenylenediamine with different electron-donating/withdrawing groups were employed to convert CO<sub>2</sub> into high-value heterocyclic benzimidazoles. The optimal reaction conditions were determined by a single factor optimization approach. A series of benzimidazole derivatives were synthesized with a yield of up to 96% under atmospheric pressure, indicating that the catalyst can efficiently fix CO<sub>2</sub>. This work not only designs a simple and low-cost K-CN catalyst but also provides a new pathway for converting CO<sub>2</sub> into valuable benzimidazole derivatives at atmospheric pressure. © 2023 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"13 5","pages":"689-698"},"PeriodicalIF":2.2,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50156180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Fluid Dynamics Analysis of a Hollow Fiber Membrane Module for Binary Gas Mixture 二元气体混合中空纤维膜模块的计算流体动力学分析
IF 2.2 4区 环境科学与生态学
Greenhouse Gases: Science and Technology Pub Date : 2023-05-22 DOI: 10.3390/gases3020005
Salman Qadir, M. Ahsan, A. Hussain
{"title":"Computational Fluid Dynamics Analysis of a Hollow Fiber Membrane Module for Binary Gas Mixture","authors":"Salman Qadir, M. Ahsan, A. Hussain","doi":"10.3390/gases3020005","DOIUrl":"https://doi.org/10.3390/gases3020005","url":null,"abstract":"The membrane gas separation process has gained significant attention using the computational fluid dynamics (CFD) technique. This study considered the CFD method to find gas concentration profiles in a hollow fiber membrane (HFM) module to separate the binary gas mixture. The membrane was considered with a fiber thickness where each component’s mass fluxes could be obtained based on the local partial pressures, solubility, diffusion, and the membrane’s selectivity. COMSOL Multiphysics was used to solve the numerical solution at corresponding operating conditions and results were compared to experimental data. The two different mixtures, CO2/CH4 and N2/O2, were investigated to obtain concentration gradient and mass flux profiles of CO2 and O2 species in an axial direction. This study allows assessing the feed pressure’s impact on the HFM system’s overall performance. These results demonstrate that the increment in feed pressures decreased the membrane system’s separation performance. The impact of hollow fiber length indicates that increasing the active fiber length has a higher effective mass transfer region but dilutes the permeate-side purities of O2 (46% to 28%) and CO2 (93% to 73%). The results show that increasing inlet pressure and a higher concentration gradient resulted in higher flux through the membrane.","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"1 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74965598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effective direct chemical looping coal combustion using bimetallic Ti-supported Fe2O3-MnO2 oxygen carriers 利用双金属Ti -负载fe2o3 - mno2氧载体有效地直接化学环燃烧煤
IF 2.2 4区 环境科学与生态学
Greenhouse Gases: Science and Technology Pub Date : 2023-05-08 DOI: 10.1002/ghg.2223
Ewelina Ksepko, Rafal Lysowski
{"title":"Effective direct chemical looping coal combustion using bimetallic Ti-supported Fe2O3-MnO2 oxygen carriers","authors":"Ewelina Ksepko,&nbsp;Rafal Lysowski","doi":"10.1002/ghg.2223","DOIUrl":"10.1002/ghg.2223","url":null,"abstract":"<p>In this paper five bimetallic Fe<sub>2</sub>O<sub>3</sub>-MnO<sub>2</sub> oxygen carriers supported on TiO<sub>2</sub> were evaluated for direct hard coal combustion via chemical looping path. The oxygen carriers were obtained via mechanical mixing and high-temperature calcination. The samples contained varying amounts of Fe<sub>2</sub>O<sub>3</sub> (20–50 wt.%) and MnO<sub>2</sub> (65–30 wt.%) but an identical amount of inert material (15 wt.%). Both the impact of the oxygen carrier's composition and the process temperature on their reactivity with the selected hard coal were evaluated. The amount of manganese in the oxygen carriers correlated positively with their reactivity toward the fuel. It was concluded that after eight reaction cycles the oxygen carriers remained resilient for side reactions with the ash residue. Thus, the physicochemical stability of the presented oxygen carriers was proved. © 2023 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"13 4","pages":"575-592"},"PeriodicalIF":2.2,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48909882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Enhancement of iron-based oxygen carriers through alloying with tungsten oxide for chemical looping applications including water splitting 通过与氧化钨合金化增强铁基氧载体,用于化学循环应用,包括水分解
IF 2.2 4区 环境科学与生态学
Greenhouse Gases: Science and Technology Pub Date : 2023-05-06 DOI: 10.1002/ghg.2221
Jose Juan Morales Corona, Kyra Sedransk Campbell, Paul S. Fennell
{"title":"Enhancement of iron-based oxygen carriers through alloying with tungsten oxide for chemical looping applications including water splitting","authors":"Jose Juan Morales Corona,&nbsp;Kyra Sedransk Campbell,&nbsp;Paul S. Fennell","doi":"10.1002/ghg.2221","DOIUrl":"10.1002/ghg.2221","url":null,"abstract":"<p>Chemical looping applications offer a variety of options to decarbonise different industrial sectors, such as iron and steel and hydrogen production. Chemical looping with water splitting (CLWS) is a chemical looping technology, which produces H<sub>2</sub> while simultaneously capturing CO<sub>2</sub>. The selection of oxygen carriers (OCs) available to be used in CLWS is finite, due to the thermodynamic limitations of the oxidation with steam for different materials at the relevant process temperatures. Iron-based materials are one of the most widely studied options for chemical looping combustion (CLC), touted for their relative abundance and low cost; likewise, for CLWS, iron is the most promising option. However, when the reduction of iron oxide (Fe<sub>2</sub>O<sub>3</sub>) is extended to wüstite (FeO) and iron (Fe), agglomeration and sintering problems are the main challenge for fluidisation.</p><p>This work presents iron and tungsten mixed oxides as the OCs for a family of chemical looping applications. The OCs were produced via co-precipitation; performance assessment was conducted in a thermogravimetric analyser and a lab-scale fluidised bed reactor over continuous redox cycles. The use of tungsten combined with iron results in a solid solution of tungsten within the Fe<sub>2</sub>O<sub>3</sub> matrix that produced a more mechanically stable material during operation, which performed well during multiple redox cycles with no apparent decrease in the oxygen transport capacity and showed no apparent agglomeration. Furthermore, materials containing tungsten showed a resistance to carbon deposition, whereas the reference Fe<sub>2</sub>O<sub>3</sub> showed peaks of CO and CO<sub>2</sub> during the oxidation period, thus indicating carbon deposition. © 2023 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"13 4","pages":"565-574"},"PeriodicalIF":2.2,"publicationDate":"2023-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ghg.2221","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43279326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A quantitative risk assessment approach for developing contingency plans at a geologic carbon storage site 在地质碳储存地点制定应急计划的定量风险评估方法
IF 2.2 4区 环境科学与生态学
Greenhouse Gases: Science and Technology Pub Date : 2023-05-01 DOI: 10.1002/ghg.2219
Nate Mitchell, Greg Lackey, Brandon Schwartz, Brian Strazisar, Robert Dilmore
{"title":"A quantitative risk assessment approach for developing contingency plans at a geologic carbon storage site","authors":"Nate Mitchell,&nbsp;Greg Lackey,&nbsp;Brandon Schwartz,&nbsp;Brian Strazisar,&nbsp;Robert Dilmore","doi":"10.1002/ghg.2219","DOIUrl":"10.1002/ghg.2219","url":null,"abstract":"<p>Geologic carbon storage (GCS) is an increasingly important technology for reducing carbon dioxide (CO<sub>2</sub>) emissions to the atmosphere. The leakage risks associated with GCS are an environmental and human health concern, however, and site operators must develop contingency plans that thoroughly consider leakage risks and identify potential mitigation strategies. Here, we use a GCS system model (the National Risk Assessment Partnership's Open-Source Integrated Assessment Model, NRAP-Open-IAM) to evaluate different contingency plans for a hypothetical GCS site. In the scenario considered, an unplugged legacy well is discovered near the site after 5 years of CO<sub>2</sub> injection. Our simulations show that the planned operation has a relatively high chance of causing brine leakage through the legacy well and into the two overlying aquifers, the shallower of which has potable water—an unacceptable outcome. To reduce this risk, we consider five remedial response scenarios that manipulate reservoir pressures through brine extraction, injection rate reduction, and early injection stopping. NRAP-Open-IAM is used to quantify the degree to which each scenario reduces the probability of brine leakage at the site amidst reservoir uncertainty. Evaluation of the different scenarios suggests that reduction of injection rates effectively reduces leakage risks while maintaining a substantial fraction of the initially intended cumulative CO<sub>2</sub> storage. In the event of an emergency, the reservoir pressure management strategies considered here can provide operators more time while they pursue a more permanent solution. The analyses demonstrated here fit into a larger workflow we propose for evaluating the contingency plans of GCS sites. © 2023 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"13 3","pages":"320-339"},"PeriodicalIF":2.2,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48562978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信