Greenhouse Gases: Science and Technology最新文献

筛选
英文 中文
Impact of Diverse Parameters on CO2 Adsorption in CO2 Sequestration: Utilizing a Novel Triaxial Testing Apparatus
IF 2.7 4区 环境科学与生态学
Greenhouse Gases: Science and Technology Pub Date : 2025-01-30 DOI: 10.1002/ghg.2322
Emad Ansari Ardehjani, Mohammad Ataei, Farhang Sereshki, Ali Mirzaghorbanali, Naj Aziz
{"title":"Impact of Diverse Parameters on CO2 Adsorption in CO2 Sequestration: Utilizing a Novel Triaxial Testing Apparatus","authors":"Emad Ansari Ardehjani,&nbsp;Mohammad Ataei,&nbsp;Farhang Sereshki,&nbsp;Ali Mirzaghorbanali,&nbsp;Naj Aziz","doi":"10.1002/ghg.2322","DOIUrl":"https://doi.org/10.1002/ghg.2322","url":null,"abstract":"<div>\u0000 \u0000 <p>In order to minimize greenhouse gas emissions, it is essential from an environmental point of view to employ CO<sub>2</sub> sequestration technology to store CO<sub>2</sub> in underground coal layers. To study this strategy, a triaxial testing apparatus is required. This study introduces a novel triaxial testing apparatus developed to explore enhanced coal bed methane (ECBM) and carbon dioxide (CO<sub>2</sub>) sequestration techniques. Several laboratory tests were conducted to validate the apparatus and study the behavior of coal exposed to CO<sub>2</sub> using this machine. In fact, the implementation of this machine marks the initial step in an empirical feasibility analysis of CO<sub>2</sub> sequestration in Iranian coal seams. This analysis involves examining the impact of ash content, ambient temperature, and saturation direction on CO<sub>2</sub> adsorption and emission in various coal samples. Two different thermal coal samples from Chamestan and Tash mines were utilized. Some results, such as the trend of the coal sample's strain, show good correlation with previous work. Additionally, some results presented in this work are novel. On the basis of the results, the developed apparatus demonstrated satisfactory performance, and its innovative design fully meets the desired outcome. Higher ash content increases coal strength and reduces deformation. Lower ash content leads to more gas adsorption and deformation post-saturation. Gas adsorption is higher at 25°C than at 4°C. Moreover, coal samples at 25°C had 12.5 times more axial strain than those at 4°C. Lateral saturation causes 13.72% larger axial strain changes than top and end saturation due to increased gas-sample contact and penetration into the coal matrix.</p>\u0000 </div>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"15 1","pages":"53-67"},"PeriodicalIF":2.7,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nickel Aluminum Spinel Derived Ni-F-Al Active Site for the Catalytic Dehydrofluorination of Potent Greenhouse Gas 1,1,1,2-Tetrafluoroethane
IF 2.7 4区 环境科学与生态学
Greenhouse Gases: Science and Technology Pub Date : 2025-01-27 DOI: 10.1002/ghg.2324
Fangcao Liu, Bing Liu, Yiwei Sun, Jinru Liu, Yubao Bi, Jiaming Zhao, Xiaoli Wei, Wenfeng Han
{"title":"Nickel Aluminum Spinel Derived Ni-F-Al Active Site for the Catalytic Dehydrofluorination of Potent Greenhouse Gas 1,1,1,2-Tetrafluoroethane","authors":"Fangcao Liu,&nbsp;Bing Liu,&nbsp;Yiwei Sun,&nbsp;Jinru Liu,&nbsp;Yubao Bi,&nbsp;Jiaming Zhao,&nbsp;Xiaoli Wei,&nbsp;Wenfeng Han","doi":"10.1002/ghg.2324","DOIUrl":"https://doi.org/10.1002/ghg.2324","url":null,"abstract":"<div>\u0000 \u0000 <p>HFC-134a (1,1,1,2-tetrafluoroethane) is one of the most common refrigerants with global warming potential (100 years) of 1300. It is regulated to be phased out gradually according to the Kigali Amendment to the Montreal Protocol. Treatment of this stable chemical poses significant challenge. Highly efficient nickel aluminum spinel catalysts were fabricated by sol–gel method for the catalytic dehydrofluorination of HFC-134a. The effect of Ni/Al ratio in the NiAl<sub>2</sub>O<sub>4</sub> spinel precursors on the performance of NiAl catalysts was studied by x-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscope (SEM), transmission electron microscopy (TEM), NH<sub>3</sub>-TPD, and XPS. Nickel–aluminum ratio in the nickel–aluminum spinel precursor plays a major role on the formation of strong acid and active species Ni-F-Al. With Ni/Al ratio of 4, the (3 1 1) crystal face of NiAl<sub>2</sub>O<sub>4</sub> interfaced with the (1 1 1) crystal face of NiO and the (4 0 0) crystal face of NiAl<sub>2</sub>O<sub>4</sub>. This interaction facilitates the formation of Ni-F-Al active species following the dehydrofluorination reaction. Furthermore, the Ni-F-Al species altered the acid structure of NiAl catalysts. It was found that NiAl catalyst with a Ni/Al ratio of 4 has the best catalytic performance compared with other catalysts (with conversion of 35%), and no deactivation trend was observed after 50 h of time on stream. (Reaction conditions: N<sub>2</sub>/CF<sub>3</sub>CH<sub>2</sub>F = 10, T = 450°C, GHSV = 660 h<sup>−1</sup>).</p>\u0000 </div>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"15 1","pages":"68-78"},"PeriodicalIF":2.7,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research and Prospect of CCUS-EOR Technology and Carbon Emission Reduction Accounting Evaluation
IF 2.7 4区 环境科学与生态学
Greenhouse Gases: Science and Technology Pub Date : 2025-01-27 DOI: 10.1002/ghg.2323
Yanjun Lu, Qianbo Fan, Manping Yang, Jianguo Ma, Lan Meng, Zhaoran Wu
{"title":"Research and Prospect of CCUS-EOR Technology and Carbon Emission Reduction Accounting Evaluation","authors":"Yanjun Lu,&nbsp;Qianbo Fan,&nbsp;Manping Yang,&nbsp;Jianguo Ma,&nbsp;Lan Meng,&nbsp;Zhaoran Wu","doi":"10.1002/ghg.2323","DOIUrl":"https://doi.org/10.1002/ghg.2323","url":null,"abstract":"<div>\u0000 \u0000 <p>As a potential carbon emission reduction measure, carbon capture, utilization and storage technology is of great significance to achieve the goals of “carbon peak” and “carbon neutrality.” The implementation of carbon capture, utilization, and storage-enhanced oil recovery (CCUS-EOR) in the oil and gas industry serves the dual purpose of utilizing greenhouse gases as resources and enhancing oil recovery. This approach is a key strategy for achieving carbon emission reductions. In this study, the key problems of source-sink matching, injection mode, oil displacement storage, and leakage were analyzed in conjunction with CCUS-EOR technology used in both domestic and foreign oil fields. Additionally, the carbon emission reduction accounting methods of different oil fields were compared. Carbon source, carbon dioxide concentration, capture, and transportation mode are important influencing factors of carbon source selection. The project should follow the principle of proximity and select high-concentration gas source as the development object in the early stage; the main methods of carbon dioxide injection are continuous carbon dioxide injection, alternating water and gas injection, and CO<sub>2</sub> huff and puff among which injection speed and injection pressure are the key parameters; the underground occurrence state and storage capacity of carbon dioxide gas are dynamic changes in the process of oil displacement and storage; the three parts of surface leakage, injection wellbore leakage, and production well production are the key points of CCUS-EOR project leakage. The corresponding monitoring methods are analyzed for different leakage modes; the CCUS-EOR carbon emission reduction accounting method is comprehensively analyzed, and the application of carbon emission reduction accounting methods in major oilfields is compared. The accounting method of “life cycle assessment (LCA) + emission factor method + actual measurement method” is proposed. The research holds significant importance for enhancing the entire CCUS-EOR technology chain and refining the CCUS-EOR emission reduction accounting methodology. It also facilitates the integration of CCUS-EOR projects into the carbon trading market, thereby enabling the efficient development of carbon assets in carbon dioxide flooding projects within oil and gas fields.</p>\u0000 </div>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"15 1","pages":"79-97"},"PeriodicalIF":2.7,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Response Surface Optimisation of Carbon Dioxide Adsorption Onto Palm Shell Activated Carbon Functionalised With Natural Amino Acids
IF 2.7 4区 环境科学与生态学
Greenhouse Gases: Science and Technology Pub Date : 2025-01-25 DOI: 10.1002/ghg.2321
Nur Syahirah Mohamed Hatta, Farihahusnah Hussin, Lai Ti Gew, Mohamed Kheireddine Aroua
{"title":"Response Surface Optimisation of Carbon Dioxide Adsorption Onto Palm Shell Activated Carbon Functionalised With Natural Amino Acids","authors":"Nur Syahirah Mohamed Hatta,&nbsp;Farihahusnah Hussin,&nbsp;Lai Ti Gew,&nbsp;Mohamed Kheireddine Aroua","doi":"10.1002/ghg.2321","DOIUrl":"https://doi.org/10.1002/ghg.2321","url":null,"abstract":"<p>Amino acids have shown promising results for carbon dioxide (CO<sub>2</sub>) capture when functionalised on solid materials; however, the functionalisation often relies on commercial synthetic amino acids. This study investigated the optimal CO<sub>2</sub> adsorption performance of amino acid–functionalised material synthesised from palm shell–based activated carbon and natural amino acids, specifically egg white (EW) solution, in a continuous adsorption column. The process conditions of the column were optimised using response surface methodology. Four parameters, namely, the gas flow rate, adsorption temperature, CO<sub>2</sub> concentration and EW concentration in the impregnation solution, were identified as significantly affecting CO<sub>2</sub> adsorption performance. Good agreements were obtained between the predicted and experimental data, with the coefficients of determination ranging from 0.9639 to 0.9784. A maximum CO<sub>2</sub> adsorption capacity of 1.1793 mmol/g was achieved under optimal process conditions: a gas flow rate of 200 mL/min, an adsorption temperature of 25°C, a CO<sub>2</sub> concentration of 25 vol.%, and an EW concentration of 15 wt.%. The validation results further confirmed the reliability of the developed model equation in predicting the maximum CO<sub>2</sub> adsorption capacity at a fixed 15 vol.% CO<sub>2</sub> concentration, with low estimation error. The comparable results obtained using EW waste in this study represent a significant finding in the potential for waste valorisation, aligning with Sustainable Development Goal (SDG) 12 of the United Nations Sustainable Development Goals, as well as contributing to climate action as outlined in SDG 13.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"15 1","pages":"36-52"},"PeriodicalIF":2.7,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ghg.2321","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Relative Permeability Hysteresis on CO2 Storage in Saline Aquifers
IF 2.7 4区 环境科学与生态学
Greenhouse Gases: Science and Technology Pub Date : 2024-12-27 DOI: 10.1002/ghg.2319
Reza Khoramian, Ibraheem Salaudeen, Peyman Pourafshary, Masoud Riazi, Riyaz Kharrat
{"title":"Impact of Relative Permeability Hysteresis on CO2 Storage in Saline Aquifers","authors":"Reza Khoramian,&nbsp;Ibraheem Salaudeen,&nbsp;Peyman Pourafshary,&nbsp;Masoud Riazi,&nbsp;Riyaz Kharrat","doi":"10.1002/ghg.2319","DOIUrl":"https://doi.org/10.1002/ghg.2319","url":null,"abstract":"<div>\u0000 \u0000 <p>The urgent challenge of climate change, driven by rising carbon emissions, necessitates innovative strategies for carbon capture and storage (CCS). This study examines the impact of hysteresis in relative permeability on CO<sub>2</sub> entrapment efficiency within saline aquifers, known for their significant storage capabilities. An aquifer model was analyzed through numerical simulation by varying hysteresis values from 0.2 to 0.5 to evaluate their impact on CO<sub>2</sub> plume behavior, retention during water-alternating-gas (WAG) injection, and plume morphology. The CO<sub>2</sub> plume exhibits a funnel-shaped configuration at low hysteresis with a narrow, pointed base, indicating a concentrated upward migration trajectory. In contrast, a hysteresis value of 0.5 results in diminished gas movement toward the upper aquifer, transforming the plume into a more oval shape. Results from the land trapping model further support our findings, revealing an inverse relationship where increased hysteresis enhances residual CO<sub>2</sub> entrapment, reflected in trapping coefficient values ranging from 0.5 to 4. This underscores the model's efficacy in verifying gas trapping efficiency and safety during sequestration. Moreover, increased water flow generates stronger forces, pushing CO<sub>2</sub> into narrower pore spaces, where it becomes trapped. Our findings indicate that increased hysteresis enhances CO<sub>2</sub> retention by limiting vertical migration and significantly influences plume geometry, promoting stable and predictable distribution patterns. At higher hysteresis values, CO<sub>2</sub> migration is significantly restricted, resulting in near-complete immobilization of the injected gas. This research highlights hysteresis's critical role in refining injection methodologies and enhancing plume stability for long-term CO<sub>2</sub> storage. © 2024 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>\u0000 </div>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"15 1","pages":"3-12"},"PeriodicalIF":2.7,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Techno-Economic Analysis of Glycerol Steam Reforming with Amine-Based Carbon Capture for Blue Hydrogen Production: A Rate-Based Kinetic Model Approach
IF 2.7 4区 环境科学与生态学
Greenhouse Gases: Science and Technology Pub Date : 2024-12-06 DOI: 10.1002/ghg.2320
Pali Rosha, Mohammad Sajjadi, Hussameldin Ibrahim
{"title":"Techno-Economic Analysis of Glycerol Steam Reforming with Amine-Based Carbon Capture for Blue Hydrogen Production: A Rate-Based Kinetic Model Approach","authors":"Pali Rosha,&nbsp;Mohammad Sajjadi,&nbsp;Hussameldin Ibrahim","doi":"10.1002/ghg.2320","DOIUrl":"https://doi.org/10.1002/ghg.2320","url":null,"abstract":"<p>This study outlines a comprehensive process design utilising glycerol-steam reforming for an H<sub>2</sub>-enriched gas stream, coupled with carbon dioxide removal via a chemical absorption system, followed by a techno-economic analysis. The Aspen Plus economic analyser assesses the developed model, incorporating simulation results and literature data. Initially, the CO<sub>2</sub> capture unit was planned with a standalone absorber and stripper, later integrated for solvent makeup calculation. Findings reveal that as catalyst loading increased from 5 to 50 kg, glycerol conversion and product molar fraction improved. For a targeted H<sub>2</sub> production of 10 t/day, optimal reactor dimensions are 3.2 m diameter and 30 m length, corresponding to a reactant flow of 105 t/day and a 2.52 MW heat duty at stoichiometry conditions. To capture 95% CO<sub>2</sub> from the reformed product stream, absorber and stripper packing heights of 12 and 7 m, respectively, with column diameters of 1.25 and 2.71 m are necessary. The production cost of H<sub>2</sub> is determined to be $3.8 per kg, as revealed by the techno-economic analysis. Calculated values for net present value, discounted payback period, and internal rate of return stand at $30 million, 5 years, and 25.0%, respectively. © 2024 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"15 1","pages":"23-35"},"PeriodicalIF":2.7,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ghg.2320","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the effect of alcohol additives on ammonia decarburization performance and ammonia escape
IF 2.7 4区 环境科学与生态学
Greenhouse Gases: Science and Technology Pub Date : 2024-11-28 DOI: 10.1002/ghg.2317
Yu Bin Wang, Jie Rui Yu, Xiao Xian Zhang, Hao Chen, Han Bang Ruan, Guo Hua Yang
{"title":"Study on the effect of alcohol additives on ammonia decarburization performance and ammonia escape","authors":"Yu Bin Wang,&nbsp;Jie Rui Yu,&nbsp;Xiao Xian Zhang,&nbsp;Hao Chen,&nbsp;Han Bang Ruan,&nbsp;Guo Hua Yang","doi":"10.1002/ghg.2317","DOIUrl":"https://doi.org/10.1002/ghg.2317","url":null,"abstract":"<p>Ammonia carbon capture is characterized by low corrosion, resistance to oxidation and degradation, and low energy consumption for regeneration. However, it also presents challenges such as a slow absorption rate and notable ammonia escape. Current ammonia decarbonization research primarily focuses on the flue gas from power plants, which differs in composition from ship exhaust gas. To address this, we constructed a small carbon absorption test bench and used a mixture of CO<sub>2</sub> and N<sub>2</sub> as the ship exhaust gas. Ammonia solution and alcohol served as absorbents and additives, respectively, to explore the effects of the additive hydroxyl number, the concentrations of the additive and ammonia solution, and the reaction temperature on carbon loading, absorption rate, and ammonia escape. Results indicated that n-propanol was most effective in inhibiting ammonia escape, and a low concentration of ammonia solution was more suitable for absorbing CO<sub>2</sub>. Specifically, when the concentration of ammonia was 4% and the concentration of n-propanol was 0.2 mol/L, the cumulative ammonia escape was reduced by 34% compared to the scenario without additives. Additionally, the carbon loading and average absorption rate reached 0.49 mol CO<sub>2</sub>/mol NH<sub>3</sub> and 2.33 × 10<sup>−3</sup> mol·kg<sup>−1</sup>·min<sup>−1</sup>, respectively, representing increases of 34.2 and 60.7%. However, as the reaction temperature increased, the effectiveness of n-propanol in enhancing ammonia absorption diminished. © 2024 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"15 1","pages":"13-22"},"PeriodicalIF":2.7,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced sintering resistance of NiFe-based RWGS catalysts through Cu doping 通过掺杂铜提高 NiFe 基 RWGS 催化剂的抗烧结性
IF 2.7 4区 环境科学与生态学
Greenhouse Gases: Science and Technology Pub Date : 2024-11-19 DOI: 10.1002/ghg.2314
Jiayi Wu, Wenhao Zhang, Hecao Chen, Weifeng Yu, Bo Sun, Minghui Zhu, Yi-Fan Han
{"title":"Enhanced sintering resistance of NiFe-based RWGS catalysts through Cu doping","authors":"Jiayi Wu,&nbsp;Wenhao Zhang,&nbsp;Hecao Chen,&nbsp;Weifeng Yu,&nbsp;Bo Sun,&nbsp;Minghui Zhu,&nbsp;Yi-Fan Han","doi":"10.1002/ghg.2314","DOIUrl":"https://doi.org/10.1002/ghg.2314","url":null,"abstract":"<p>The reverse water-gas shift (RWGS) reaction offers an effective method for mitigating CO<sub>2</sub> emissions. Due to its affordability and physicochemical stability, iron has garnered significant attention as a potential catalyst for RWGS. The incorporation of nickel and copper promoters can enhance CO<sub>2</sub> conversion and CO selectivity in Fe-based catalysts. This study focuses on modifying the strength of the Strong Metal-Support Interaction (SMSI) through particle size optimization. Doping Cu into NiFe-based catalysts restricts particle size, which influences the curvature of the Ni<sup>0</sup>@FeO<sub>x</sub> interface. This curvature enhances the electron coupling between Ni<sup>0</sup> and FeO<sub>x</sub>, promoting the formation of a denser and thicker Ni<sup>0</sup> and FeO<sub>x</sub> layer. This results in a nearly 90% increase in the CO<sub>2</sub> reaction rate during the sintering resistance test by anchoring Ni<sup>0</sup> and facilitating electron transfer to active sites. Such morphological evolution improves high-temperature resistance to sintering during RWGS. © 2024 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 6","pages":"1113-1121"},"PeriodicalIF":2.7,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data-driven framework for predicting the sorption capacity of carbon dioxide and methane in tight reservoirs 致密储层二氧化碳和甲烷吸附能力预测的数据驱动框架
IF 2.7 4区 环境科学与生态学
Greenhouse Gases: Science and Technology Pub Date : 2024-11-17 DOI: 10.1002/ghg.2318
Fahd Mohamad Alqahtani, Mohamed Riad Youcefi, Hakim Djema, Menad Nait Amar, Mohammad Ghasemi
{"title":"Data-driven framework for predicting the sorption capacity of carbon dioxide and methane in tight reservoirs","authors":"Fahd Mohamad Alqahtani,&nbsp;Mohamed Riad Youcefi,&nbsp;Hakim Djema,&nbsp;Menad Nait Amar,&nbsp;Mohammad Ghasemi","doi":"10.1002/ghg.2318","DOIUrl":"https://doi.org/10.1002/ghg.2318","url":null,"abstract":"<p>As energy demand continues to rise and conventional fuel sources dwindle, there is growing emphasis on previously overlooked reservoirs, such as tight reservoirs. Shale and coal formations have emerged as highly attractive options due to their substantial contributions to global gas reserves. Enhanced shale gas recovery (ESGR) and enhanced coalbed methane recovery (ECBM) based on gas injection are advanced techniques used to increase the extraction of gas from shale and coal formations. One of the key challenges associated with these formations and their enhanced recovery methods is accurately predicting the sorption process and its profile. This is crucial because it affects how methane (CH<sub>4</sub>) and carbon dioxide (CO<sub>2</sub>) are stored and released from the rock, and it significantly impacts the evaluation of gas content and the potential productivity of these formations. Due to the high cost of experimental procedures and the moderate accuracy of existing predictive approaches, this study proposes various cheap and consistent data-driven schemes for predicting the sorption of CH<sub>4</sub> and CO<sub>2</sub> in shale and coal formations. In this regard, three intelligent models, including generalized regression neural network (GRNN), radial basis function neural network (RBFNN), and categorical boosting (CatBoost), were taught and tested using more than 3800 real measurements of CH<sub>4</sub> and CO<sub>2</sub> sorption in shale and coal formations. To find automatically their appropriate control parameters and improve their prediction ability, RBFNN and CatBoost were evolved using grey wolf optimization (GWO). The obtained results exhibited the encouraging prediction capabilities of the suggested models. In addition, it was found that CatBoost-GWO is the most accurate scheme with total root mean square (RMSE) and determination coefficient (<i>R</i><sup>2</sup>) of 0.1229 and 0.9993 for CO<sub>2</sub> sorption, and 0.0681 and 0.9970 for CH<sub>4</sub> sorption, respectively. Additionally, this approach demonstrated its physical validity by respecting the real sorption tendencies with respect to operational parameters. Furthermore, the CatBoost-GWO model outperforms recently published machine learning approaches. Lastly, the findings of this study offer a significant contribution by demonstrating that the suggested model can greatly improve the ease of estimating CO<sub>2</sub> and CH<sub>4</sub> sorption in tight formations, thereby facilitating the simulation of other parameters related to this process. © 2024 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 6","pages":"1092-1112"},"PeriodicalIF":2.7,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative assessment of CO2 leakage risk in geologic carbon storage management 地质储碳管理中CO2泄漏风险定量评价
IF 2.7 4区 环境科学与生态学
Greenhouse Gases: Science and Technology Pub Date : 2024-11-12 DOI: 10.1002/ghg.2315
Meng Jing, Qi Li, Guizhen Liu, Quan Xue
{"title":"Quantitative assessment of CO2 leakage risk in geologic carbon storage management","authors":"Meng Jing,&nbsp;Qi Li,&nbsp;Guizhen Liu,&nbsp;Quan Xue","doi":"10.1002/ghg.2315","DOIUrl":"https://doi.org/10.1002/ghg.2315","url":null,"abstract":"<p>Large-scale geological storage of carbon dioxide (CO<sub>2</sub>) is indispensable for mitigating climate change but faces significant challenges, especially in the accurate quantitative assessment of leakage risks to ensure long-term security. Given these circumstances, this paper proposes an innovative approach for quantitatively assessing CO<sub>2</sub> leakage risk to address the previous limitations of limited accuracy and insufficient data. We construct a fault tree and transform it into a Bayesian network–directed acyclic graph, and then use judgment sets along with fuzzy set theory to obtain prior probabilities of root nodes. The feature, event, and process method was utilized to identify key components and subsequently determine the conditional probability table (CPT) of the leaf node. The subjective experience assessments from experts are defuzzified to obtain the CPTs of intermediate nodes. The obtained basic probability parameters are input into the directed acyclic graph to complete the model construction. After calculating the leakage probability using this model, it is combined with the severity of impacts to conduct a comprehensive risk assessment. Furthermore, critical CO<sub>2</sub> risk sources can be determined through posterior probability calculations when intermediate nodes are designated as deterministic risk events. The gradual implementation process of the proposed model is demonstrated via a typical case study. The results indicate an overall CO<sub>2</sub> leakage probability of 29%, with probabilities of leakage along faults/fractures, caprock, and well identified as 32%, 28%, and 19%, respectively. The project is categorized as a medium-low risk level. When leakage is confirmed, tectonic movement, thickness, and delamination at interface connections/the presence of cracks are the critical risk sources, and measures to mitigate key risks are outlined. The identified key risk factors conform to empirical evidence and previous research, validating the accuracy of the model. This study is instrumental in CO<sub>2</sub> geological storage risk assessment and scalable development program design. © 2024 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 6","pages":"1068-1091"},"PeriodicalIF":2.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信