Emad Ansari Ardehjani, Mohammad Ataei, Farhang Sereshki, Ali Mirzaghorbanali, Naj Aziz
{"title":"Impact of Diverse Parameters on CO2 Adsorption in CO2 Sequestration: Utilizing a Novel Triaxial Testing Apparatus","authors":"Emad Ansari Ardehjani, Mohammad Ataei, Farhang Sereshki, Ali Mirzaghorbanali, Naj Aziz","doi":"10.1002/ghg.2322","DOIUrl":"https://doi.org/10.1002/ghg.2322","url":null,"abstract":"<div>\u0000 \u0000 <p>In order to minimize greenhouse gas emissions, it is essential from an environmental point of view to employ CO<sub>2</sub> sequestration technology to store CO<sub>2</sub> in underground coal layers. To study this strategy, a triaxial testing apparatus is required. This study introduces a novel triaxial testing apparatus developed to explore enhanced coal bed methane (ECBM) and carbon dioxide (CO<sub>2</sub>) sequestration techniques. Several laboratory tests were conducted to validate the apparatus and study the behavior of coal exposed to CO<sub>2</sub> using this machine. In fact, the implementation of this machine marks the initial step in an empirical feasibility analysis of CO<sub>2</sub> sequestration in Iranian coal seams. This analysis involves examining the impact of ash content, ambient temperature, and saturation direction on CO<sub>2</sub> adsorption and emission in various coal samples. Two different thermal coal samples from Chamestan and Tash mines were utilized. Some results, such as the trend of the coal sample's strain, show good correlation with previous work. Additionally, some results presented in this work are novel. On the basis of the results, the developed apparatus demonstrated satisfactory performance, and its innovative design fully meets the desired outcome. Higher ash content increases coal strength and reduces deformation. Lower ash content leads to more gas adsorption and deformation post-saturation. Gas adsorption is higher at 25°C than at 4°C. Moreover, coal samples at 25°C had 12.5 times more axial strain than those at 4°C. Lateral saturation causes 13.72% larger axial strain changes than top and end saturation due to increased gas-sample contact and penetration into the coal matrix.</p>\u0000 </div>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"15 1","pages":"53-67"},"PeriodicalIF":2.7,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nickel Aluminum Spinel Derived Ni-F-Al Active Site for the Catalytic Dehydrofluorination of Potent Greenhouse Gas 1,1,1,2-Tetrafluoroethane","authors":"Fangcao Liu, Bing Liu, Yiwei Sun, Jinru Liu, Yubao Bi, Jiaming Zhao, Xiaoli Wei, Wenfeng Han","doi":"10.1002/ghg.2324","DOIUrl":"https://doi.org/10.1002/ghg.2324","url":null,"abstract":"<div>\u0000 \u0000 <p>HFC-134a (1,1,1,2-tetrafluoroethane) is one of the most common refrigerants with global warming potential (100 years) of 1300. It is regulated to be phased out gradually according to the Kigali Amendment to the Montreal Protocol. Treatment of this stable chemical poses significant challenge. Highly efficient nickel aluminum spinel catalysts were fabricated by sol–gel method for the catalytic dehydrofluorination of HFC-134a. The effect of Ni/Al ratio in the NiAl<sub>2</sub>O<sub>4</sub> spinel precursors on the performance of NiAl catalysts was studied by x-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscope (SEM), transmission electron microscopy (TEM), NH<sub>3</sub>-TPD, and XPS. Nickel–aluminum ratio in the nickel–aluminum spinel precursor plays a major role on the formation of strong acid and active species Ni-F-Al. With Ni/Al ratio of 4, the (3 1 1) crystal face of NiAl<sub>2</sub>O<sub>4</sub> interfaced with the (1 1 1) crystal face of NiO and the (4 0 0) crystal face of NiAl<sub>2</sub>O<sub>4</sub>. This interaction facilitates the formation of Ni-F-Al active species following the dehydrofluorination reaction. Furthermore, the Ni-F-Al species altered the acid structure of NiAl catalysts. It was found that NiAl catalyst with a Ni/Al ratio of 4 has the best catalytic performance compared with other catalysts (with conversion of 35%), and no deactivation trend was observed after 50 h of time on stream. (Reaction conditions: N<sub>2</sub>/CF<sub>3</sub>CH<sub>2</sub>F = 10, T = 450°C, GHSV = 660 h<sup>−1</sup>).</p>\u0000 </div>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"15 1","pages":"68-78"},"PeriodicalIF":2.7,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research and Prospect of CCUS-EOR Technology and Carbon Emission Reduction Accounting Evaluation","authors":"Yanjun Lu, Qianbo Fan, Manping Yang, Jianguo Ma, Lan Meng, Zhaoran Wu","doi":"10.1002/ghg.2323","DOIUrl":"https://doi.org/10.1002/ghg.2323","url":null,"abstract":"<div>\u0000 \u0000 <p>As a potential carbon emission reduction measure, carbon capture, utilization and storage technology is of great significance to achieve the goals of “carbon peak” and “carbon neutrality.” The implementation of carbon capture, utilization, and storage-enhanced oil recovery (CCUS-EOR) in the oil and gas industry serves the dual purpose of utilizing greenhouse gases as resources and enhancing oil recovery. This approach is a key strategy for achieving carbon emission reductions. In this study, the key problems of source-sink matching, injection mode, oil displacement storage, and leakage were analyzed in conjunction with CCUS-EOR technology used in both domestic and foreign oil fields. Additionally, the carbon emission reduction accounting methods of different oil fields were compared. Carbon source, carbon dioxide concentration, capture, and transportation mode are important influencing factors of carbon source selection. The project should follow the principle of proximity and select high-concentration gas source as the development object in the early stage; the main methods of carbon dioxide injection are continuous carbon dioxide injection, alternating water and gas injection, and CO<sub>2</sub> huff and puff among which injection speed and injection pressure are the key parameters; the underground occurrence state and storage capacity of carbon dioxide gas are dynamic changes in the process of oil displacement and storage; the three parts of surface leakage, injection wellbore leakage, and production well production are the key points of CCUS-EOR project leakage. The corresponding monitoring methods are analyzed for different leakage modes; the CCUS-EOR carbon emission reduction accounting method is comprehensively analyzed, and the application of carbon emission reduction accounting methods in major oilfields is compared. The accounting method of “life cycle assessment (LCA) + emission factor method + actual measurement method” is proposed. The research holds significant importance for enhancing the entire CCUS-EOR technology chain and refining the CCUS-EOR emission reduction accounting methodology. It also facilitates the integration of CCUS-EOR projects into the carbon trading market, thereby enabling the efficient development of carbon assets in carbon dioxide flooding projects within oil and gas fields.</p>\u0000 </div>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"15 1","pages":"79-97"},"PeriodicalIF":2.7,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nur Syahirah Mohamed Hatta, Farihahusnah Hussin, Lai Ti Gew, Mohamed Kheireddine Aroua
{"title":"Response Surface Optimisation of Carbon Dioxide Adsorption Onto Palm Shell Activated Carbon Functionalised With Natural Amino Acids","authors":"Nur Syahirah Mohamed Hatta, Farihahusnah Hussin, Lai Ti Gew, Mohamed Kheireddine Aroua","doi":"10.1002/ghg.2321","DOIUrl":"https://doi.org/10.1002/ghg.2321","url":null,"abstract":"<p>Amino acids have shown promising results for carbon dioxide (CO<sub>2</sub>) capture when functionalised on solid materials; however, the functionalisation often relies on commercial synthetic amino acids. This study investigated the optimal CO<sub>2</sub> adsorption performance of amino acid–functionalised material synthesised from palm shell–based activated carbon and natural amino acids, specifically egg white (EW) solution, in a continuous adsorption column. The process conditions of the column were optimised using response surface methodology. Four parameters, namely, the gas flow rate, adsorption temperature, CO<sub>2</sub> concentration and EW concentration in the impregnation solution, were identified as significantly affecting CO<sub>2</sub> adsorption performance. Good agreements were obtained between the predicted and experimental data, with the coefficients of determination ranging from 0.9639 to 0.9784. A maximum CO<sub>2</sub> adsorption capacity of 1.1793 mmol/g was achieved under optimal process conditions: a gas flow rate of 200 mL/min, an adsorption temperature of 25°C, a CO<sub>2</sub> concentration of 25 vol.%, and an EW concentration of 15 wt.%. The validation results further confirmed the reliability of the developed model equation in predicting the maximum CO<sub>2</sub> adsorption capacity at a fixed 15 vol.% CO<sub>2</sub> concentration, with low estimation error. The comparable results obtained using EW waste in this study represent a significant finding in the potential for waste valorisation, aligning with Sustainable Development Goal (SDG) 12 of the United Nations Sustainable Development Goals, as well as contributing to climate action as outlined in SDG 13.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"15 1","pages":"36-52"},"PeriodicalIF":2.7,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ghg.2321","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143380999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}