Nur Syahirah Mohammed Hatta, Farihahusnah Hussin, Lai Ti Gew, Mohamed Kheireddine Aroua
{"title":"废源天然氨基酸浸渍活性炭吸附CO2的等温线、热力学及再生研究","authors":"Nur Syahirah Mohammed Hatta, Farihahusnah Hussin, Lai Ti Gew, Mohamed Kheireddine Aroua","doi":"10.1002/ghg.2354","DOIUrl":null,"url":null,"abstract":"<p>This study investigated the CO<sub>2</sub> adsorption isotherms, thermodynamic properties and regeneration efficiency of palm shell activated carbon (AC) impregnated with waste-sourced natural amino acids from egg white (EW), namely, ACEW-30. Initially, the performance of ACEW-30 was compared with AC impregnated with fresh EW and synthetic amino acids using fixed-bed adsorption system. The results revealed that ACEW-30 prepared from waste sources demonstrated comparable performance with other adsorbents tested, suggesting its potential for waste valorisation. Afterwards, the data were fitted to various adsorption isotherm models, namely, Langmuir, Freundlich, Sips, Toth, Dubinin–Radushkevich and Temkin, to characterise the adsorbate-adsorbent interaction between CO<sub>2</sub> molecules and ACEW-30 at different adsorption temperatures (25–50°C) and CO<sub>2</sub> partial pressures (0.15–0.30 vol.%). The isotherm results were used to evaluate thermodynamic properties using Van't Hoff and Clausius–Clapeyron equations. The effect of regeneration conditions (desorption temperatures and nitrogen purging flow rate) have also been investigated prior to cyclic adsorption–desorption experiments. Overall findings indicate that CO<sub>2</sub> adsorption on ACEW-30 was best fitted to Freundlich isotherm, spontaneous and exothermic in nature. The isosteric heat of adsorption was within 20–24 kJ/mol, suggesting that the adsorption mechanism lies within the intermediate region between purely physical and purely chemical. Remarkably, the results obtained from regeneration studies reveal that ACEW-30 exhibited high regeneration stability at 25°C and 800 mL/min purging flow rate, with more than 87% efficiency even after 20 cyclic adsorption–desorption.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"15 4","pages":"472-486"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://scijournals.onlinelibrary.wiley.com/doi/epdf/10.1002/ghg.2354","citationCount":"0","resultStr":"{\"title\":\"Isotherms, Thermodynamics and Regeneration Studies of CO2 Adsorption on Activated Carbon Impregnated With Waste-Sourced Natural Amino Acids\",\"authors\":\"Nur Syahirah Mohammed Hatta, Farihahusnah Hussin, Lai Ti Gew, Mohamed Kheireddine Aroua\",\"doi\":\"10.1002/ghg.2354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigated the CO<sub>2</sub> adsorption isotherms, thermodynamic properties and regeneration efficiency of palm shell activated carbon (AC) impregnated with waste-sourced natural amino acids from egg white (EW), namely, ACEW-30. Initially, the performance of ACEW-30 was compared with AC impregnated with fresh EW and synthetic amino acids using fixed-bed adsorption system. The results revealed that ACEW-30 prepared from waste sources demonstrated comparable performance with other adsorbents tested, suggesting its potential for waste valorisation. Afterwards, the data were fitted to various adsorption isotherm models, namely, Langmuir, Freundlich, Sips, Toth, Dubinin–Radushkevich and Temkin, to characterise the adsorbate-adsorbent interaction between CO<sub>2</sub> molecules and ACEW-30 at different adsorption temperatures (25–50°C) and CO<sub>2</sub> partial pressures (0.15–0.30 vol.%). The isotherm results were used to evaluate thermodynamic properties using Van't Hoff and Clausius–Clapeyron equations. The effect of regeneration conditions (desorption temperatures and nitrogen purging flow rate) have also been investigated prior to cyclic adsorption–desorption experiments. Overall findings indicate that CO<sub>2</sub> adsorption on ACEW-30 was best fitted to Freundlich isotherm, spontaneous and exothermic in nature. The isosteric heat of adsorption was within 20–24 kJ/mol, suggesting that the adsorption mechanism lies within the intermediate region between purely physical and purely chemical. Remarkably, the results obtained from regeneration studies reveal that ACEW-30 exhibited high regeneration stability at 25°C and 800 mL/min purging flow rate, with more than 87% efficiency even after 20 cyclic adsorption–desorption.</p>\",\"PeriodicalId\":12796,\"journal\":{\"name\":\"Greenhouse Gases: Science and Technology\",\"volume\":\"15 4\",\"pages\":\"472-486\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://scijournals.onlinelibrary.wiley.com/doi/epdf/10.1002/ghg.2354\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Greenhouse Gases: Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://scijournals.onlinelibrary.wiley.com/doi/10.1002/ghg.2354\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Greenhouse Gases: Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://scijournals.onlinelibrary.wiley.com/doi/10.1002/ghg.2354","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Isotherms, Thermodynamics and Regeneration Studies of CO2 Adsorption on Activated Carbon Impregnated With Waste-Sourced Natural Amino Acids
This study investigated the CO2 adsorption isotherms, thermodynamic properties and regeneration efficiency of palm shell activated carbon (AC) impregnated with waste-sourced natural amino acids from egg white (EW), namely, ACEW-30. Initially, the performance of ACEW-30 was compared with AC impregnated with fresh EW and synthetic amino acids using fixed-bed adsorption system. The results revealed that ACEW-30 prepared from waste sources demonstrated comparable performance with other adsorbents tested, suggesting its potential for waste valorisation. Afterwards, the data were fitted to various adsorption isotherm models, namely, Langmuir, Freundlich, Sips, Toth, Dubinin–Radushkevich and Temkin, to characterise the adsorbate-adsorbent interaction between CO2 molecules and ACEW-30 at different adsorption temperatures (25–50°C) and CO2 partial pressures (0.15–0.30 vol.%). The isotherm results were used to evaluate thermodynamic properties using Van't Hoff and Clausius–Clapeyron equations. The effect of regeneration conditions (desorption temperatures and nitrogen purging flow rate) have also been investigated prior to cyclic adsorption–desorption experiments. Overall findings indicate that CO2 adsorption on ACEW-30 was best fitted to Freundlich isotherm, spontaneous and exothermic in nature. The isosteric heat of adsorption was within 20–24 kJ/mol, suggesting that the adsorption mechanism lies within the intermediate region between purely physical and purely chemical. Remarkably, the results obtained from regeneration studies reveal that ACEW-30 exhibited high regeneration stability at 25°C and 800 mL/min purging flow rate, with more than 87% efficiency even after 20 cyclic adsorption–desorption.
期刊介绍:
Greenhouse Gases: Science and Technology is a new online-only scientific journal dedicated to the management of greenhouse gases. The journal will focus on methods for carbon capture and storage (CCS), as well as utilization of carbon dioxide (CO2) as a feedstock for fuels and chemicals. GHG will also provide insight into strategies to mitigate emissions of other greenhouse gases. Significant advances will be explored in critical reviews, commentary articles and short communications of broad interest. In addition, the journal will offer analyses of relevant economic and political issues, industry developments and case studies.
Greenhouse Gases: Science and Technology is an exciting new online-only journal published as a co-operative venture of the SCI (Society of Chemical Industry) and John Wiley & Sons, Ltd