Post-combustion carbon dioxide adsorption of concurrent activated and surface modified palm kernel shell-derived activated carbon

IF 2.7 4区 环境科学与生态学 Q3 ENERGY & FUELS
Jia Yen Lai, Lock Hei Ngu
{"title":"Post-combustion carbon dioxide adsorption of concurrent activated and surface modified palm kernel shell-derived activated carbon","authors":"Jia Yen Lai,&nbsp;Lock Hei Ngu","doi":"10.1002/ghg.2274","DOIUrl":null,"url":null,"abstract":"<p>This research applied a concurrent activation and surface modification (CAM) process to synthesize palm kernel shell-derived activated carbon (PKSdAC) to obtain CO<sub>2</sub> affinity surface functionalization. The CAM process is a simplified activated carbon activation process that is cost-effective. The CAM process used in this study integrates sulphuric acid activation and barium chloride functionalization. The formation of barium sulphate is targeted to incorporate barium through a reduction process with carbon-containing material at elevated temperatures into PKSdAC to obtain basic metal surfaces functional group for chemical adsorption. The optimal temperature for CAM-PKSdAC CO<sub>2</sub> adsorption performance was at 40–60 °C, established through temperature-programmed desorption of CO<sub>2</sub> (TPD-CO<sub>2</sub>) analysis. The CAM-PKSdAC adsorption performance was tested using a lab-scale adsorption system. The bed CO<sub>2</sub> content was determined using gas chromatography coupled with a thermal conductivity detector (GC-TCD) by manual syringe injection. CAM-PKSdAC exhibited a high CO<sub>2</sub> adsorption capacity of 0.89 mmol g<sup>−1</sup> from TPD-CO<sub>2</sub>, and 1.91 mmol g<sup>−1</sup> from GC-TCD at 40 °C and 1 bar. It showed comparable CO<sub>2</sub> adsorption capacity to conventional surface modified-activated PKSdAC (1.96 mmol g<sup>−1</sup>) while higher than commercial and modified ACs (1.14–1.60 mmol g<sup>−1</sup>), but lower than potassium hydroxide modified ACs (1.81–2.10 mmol g<sup>−1</sup>) at 40 °C and 1 bar. Barium promoted chemisorption of CO<sub>2</sub> as supplementary reaction, which increases adsorption capacity. The non-linear Dubinin Radushkevich model strongly correlates with the experimental adsorption data for CAM-PKSdAC adsorption, indicating the physisorption process via micropore filling on CAM-PKSdAC. CAM-PKSdAC showed moderate reusability with negligible variation in adsorption capacity after 10 adsorption–desorption cycles. © 2024 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 3","pages":"492-525"},"PeriodicalIF":2.7000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ghg.2274","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Greenhouse Gases: Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ghg.2274","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This research applied a concurrent activation and surface modification (CAM) process to synthesize palm kernel shell-derived activated carbon (PKSdAC) to obtain CO2 affinity surface functionalization. The CAM process is a simplified activated carbon activation process that is cost-effective. The CAM process used in this study integrates sulphuric acid activation and barium chloride functionalization. The formation of barium sulphate is targeted to incorporate barium through a reduction process with carbon-containing material at elevated temperatures into PKSdAC to obtain basic metal surfaces functional group for chemical adsorption. The optimal temperature for CAM-PKSdAC CO2 adsorption performance was at 40–60 °C, established through temperature-programmed desorption of CO2 (TPD-CO2) analysis. The CAM-PKSdAC adsorption performance was tested using a lab-scale adsorption system. The bed CO2 content was determined using gas chromatography coupled with a thermal conductivity detector (GC-TCD) by manual syringe injection. CAM-PKSdAC exhibited a high CO2 adsorption capacity of 0.89 mmol g−1 from TPD-CO2, and 1.91 mmol g−1 from GC-TCD at 40 °C and 1 bar. It showed comparable CO2 adsorption capacity to conventional surface modified-activated PKSdAC (1.96 mmol g−1) while higher than commercial and modified ACs (1.14–1.60 mmol g−1), but lower than potassium hydroxide modified ACs (1.81–2.10 mmol g−1) at 40 °C and 1 bar. Barium promoted chemisorption of CO2 as supplementary reaction, which increases adsorption capacity. The non-linear Dubinin Radushkevich model strongly correlates with the experimental adsorption data for CAM-PKSdAC adsorption, indicating the physisorption process via micropore filling on CAM-PKSdAC. CAM-PKSdAC showed moderate reusability with negligible variation in adsorption capacity after 10 adsorption–desorption cycles. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.

Abstract Image

同时活性炭和表面改性棕榈仁壳衍生活性炭的燃烧后二氧化碳吸附作用
本研究采用同步活化和表面改性(CAM)工艺合成棕榈仁壳衍生活性炭(PKSdAC),以获得二氧化碳亲和表面功能化。CAM 工艺是一种具有成本效益的简化活性炭活化工艺。本研究采用的 CAM 工艺综合了硫酸活化和氯化钡功能化。硫酸钡的形成旨在通过含碳材料在高温下的还原过程将钡纳入 PKSdAC,从而获得基本金属表面官能团,用于化学吸附。通过对二氧化碳的温度编程解吸(TPD-CO2)分析,确定了 CAM-PKSdAC 二氧化碳吸附性能的最佳温度为 40-60 °C。使用实验室规模的吸附系统测试了 CAM-PKSdAC 的吸附性能。通过手动注射器注射,使用气相色谱法和热导检测器(GC-TCD)测定了床层中的二氧化碳含量。在 40 °C 和 1 bar 的条件下,CAM-PKSdAC 的二氧化碳吸附能力很高,TPD-CO2 值为 0.89 mmol g-1,GC-TCD 值为 1.91 mmol g-1。在 40 °C 和 1 bar 条件下,它的二氧化碳吸附能力与传统的表面改性活化 PKSdAC(1.96 mmol g-1)相当,高于商用和改性 AC(1.14-1.60 mmol g-1),但低于氢氧化钾改性 AC(1.81-2.10 mmol g-1)。钡作为补充反应促进了二氧化碳的化学吸附,从而提高了吸附容量。杜宾-拉杜什凯维奇非线性模型与 CAM-PKSdAC 吸附实验数据密切相关,表明 CAM-PKSdAC 上存在通过微孔填充的物理吸附过程。经过 10 次吸附-解吸循环后,CAM-PKSdAC 显示出适度的可重复使用性,吸附容量的变化可以忽略不计。© 2024 化学工业协会和 John Wiley & Sons, Ltd. 保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Greenhouse Gases: Science and Technology
Greenhouse Gases: Science and Technology ENERGY & FUELS-ENGINEERING, ENVIRONMENTAL
CiteScore
4.90
自引率
4.50%
发文量
55
审稿时长
3 months
期刊介绍: Greenhouse Gases: Science and Technology is a new online-only scientific journal dedicated to the management of greenhouse gases. The journal will focus on methods for carbon capture and storage (CCS), as well as utilization of carbon dioxide (CO2) as a feedstock for fuels and chemicals. GHG will also provide insight into strategies to mitigate emissions of other greenhouse gases. Significant advances will be explored in critical reviews, commentary articles and short communications of broad interest. In addition, the journal will offer analyses of relevant economic and political issues, industry developments and case studies. Greenhouse Gases: Science and Technology is an exciting new online-only journal published as a co-operative venture of the SCI (Society of Chemical Industry) and John Wiley & Sons, Ltd
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信