求助PDF
{"title":"A critical review of distributed fiber optic sensing applied to geologic carbon dioxide storage","authors":"Tianxiang Liu, Qi Li, Xiaying Li, Yongsheng Tan, Xiaomin Cao","doi":"10.1002/ghg.2279","DOIUrl":null,"url":null,"abstract":"<p>In the context of global climate change, carbon capture and storage (CCS) has become a direct and effective measure for reducing greenhouse gases emission. However, injecting CO<sub>2</sub> into the subsurface reservoirs may pose risks related to geological hazards. Therefore, monitoring the variations in underground temperature fields, strain fields, and vibration fields induced by CO<sub>2</sub> injection is essential for predicting and controlling geological hazards. Distributed fiber optic sensing (DFOS) technology, with its unique features, enables real-time monitoring of temperature, strain, and vibration. By deploying fiber optic (FO) cables inside wellbores, a DFOS can be used to effectively capture multiple underground response parameters. This paper reviews the applications of DFOS technology in CO<sub>2</sub> geological sequestration. The chapter covers aspects such as the literature review, principles and applications of fiber optics, and representative monitoring projects. Finally, the paper discusses the challenges and proposed solutions for DFOS technology in this context. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 4","pages":"676-694"},"PeriodicalIF":2.7000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Greenhouse Gases: Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ghg.2279","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
In the context of global climate change, carbon capture and storage (CCS) has become a direct and effective measure for reducing greenhouse gases emission. However, injecting CO2 into the subsurface reservoirs may pose risks related to geological hazards. Therefore, monitoring the variations in underground temperature fields, strain fields, and vibration fields induced by CO2 injection is essential for predicting and controlling geological hazards. Distributed fiber optic sensing (DFOS) technology, with its unique features, enables real-time monitoring of temperature, strain, and vibration. By deploying fiber optic (FO) cables inside wellbores, a DFOS can be used to effectively capture multiple underground response parameters. This paper reviews the applications of DFOS technology in CO2 geological sequestration. The chapter covers aspects such as the literature review, principles and applications of fiber optics, and representative monitoring projects. Finally, the paper discusses the challenges and proposed solutions for DFOS technology in this context. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.
对应用于二氧化碳地质封存的分布式光纤传感的严格审查
在全球气候变化的背景下,碳捕集与封存(CCS)已成为减少温室气体排放的直接而有效的措施。然而,向地下储层注入二氧化碳可能会带来与地质灾害相关的风险。因此,监测二氧化碳注入引起的地下温度场、应变场和振动场的变化对于预测和控制地质灾害至关重要。分布式光纤传感(DFOS)技术以其独特的功能实现了对温度、应变和振动的实时监测。通过在井筒内部署光纤(FO)电缆,DFOS 可用于有效捕捉多个地下响应参数。本文回顾了 DFOS 技术在二氧化碳地质封存中的应用。本章内容包括文献综述、光纤原理和应用以及代表性监测项目。最后,本文讨论了 DFOS 技术在这方面面临的挑战和建议的解决方案。© 2024 化学工业协会和约翰-威利父子有限公司版权所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。