Greenhouse Gases: Science and Technology最新文献

筛选
英文 中文
Numerical simulation of CO2 geological sequestration and CO2-ECBM in coal beds of Longtan Formation, Xiangzhong Depression, Hunan Province, China 中国湖南省湘中凹陷龙潭地层煤层二氧化碳地质封存和二氧化碳-ECBM数值模拟
IF 2.7 4区 环境科学与生态学
Greenhouse Gases: Science and Technology Pub Date : 2024-08-10 DOI: 10.1002/ghg.2296
Mingjun Zou, Zibin Ding, Yiyi Cheng, Linlin Yao, Yue Sun, Keying Wang
{"title":"Numerical simulation of CO2 geological sequestration and CO2-ECBM in coal beds of Longtan Formation, Xiangzhong Depression, Hunan Province, China","authors":"Mingjun Zou,&nbsp;Zibin Ding,&nbsp;Yiyi Cheng,&nbsp;Linlin Yao,&nbsp;Yue Sun,&nbsp;Keying Wang","doi":"10.1002/ghg.2296","DOIUrl":"10.1002/ghg.2296","url":null,"abstract":"<p>Geological sequestration of carbon dioxide (CO<sub>2</sub>) is an effective method to reduce greenhouse gases and an important technology for carbon neutralization. Among all geological sequestration sites, coal reservoirs are potentially effective and practicable. The Xiangzhong Depression of Hunan Province of China is selected as the research area, and the coal seam of Longtan Formation is the target reservoir in this paper. CO<sub>2</sub>-enhanced coalbed methane (CO<sub>2</sub>-ECBM) and CO<sub>2</sub> sequestration capacity are both simulated according to the laboratory experiments on reservoir parameters. During simulation, four production wells and one injection well were designed, and the simulation process can be divided into two stages: CO<sub>2</sub>-ECBM and CO<sub>2</sub> geological storage. The CO<sub>2</sub>-ECBM stage refers to CO<sub>2</sub> injection for increasing methane production, and the CO<sub>2</sub> geological storage stage aims to predict the CO<sub>2</sub> sequestration capacity. After that, sensitivity analyses of sequestration effect are carried out. During the simulation, when maintaining a constant pressure injection of CO<sub>2</sub> under the original conditions of 0.01 mD permeability, 9% porosity, and 1.47 MPa reservoir methane pressure, the total storage amount is only 0.14 × 10<sup>6</sup> m<sup>3</sup>. However, the storage amount increases significantly to 6.62 × 10<sup>6</sup> m<sup>3</sup> if the permeability increases to 1.5 mD. Orthogonal simulation indicates that permeability has the greatest impact on CO<sub>2</sub> sequestration. © 2024 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 5","pages":"743-759"},"PeriodicalIF":2.7,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141920721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leakage diffusion and safety assessment of CO2 pipeline transportation flange based on CFD simulation 基于 CFD 模拟的二氧化碳管道运输法兰泄漏扩散与安全评估
IF 2.7 4区 环境科学与生态学
Greenhouse Gases: Science and Technology Pub Date : 2024-08-08 DOI: 10.1002/ghg.2301
Weiqiu Huang, Yilan Xiao, Xufei Li, Zhou Ning
{"title":"Leakage diffusion and safety assessment of CO2 pipeline transportation flange based on CFD simulation","authors":"Weiqiu Huang,&nbsp;Yilan Xiao,&nbsp;Xufei Li,&nbsp;Zhou Ning","doi":"10.1002/ghg.2301","DOIUrl":"10.1002/ghg.2301","url":null,"abstract":"<p>Carbon capture and storage technologies play crucial roles in mitigating atmospheric greenhouse gases (GHGs). Pipeline transportation is the primary method of CO<sub>2</sub> transportation, making pipeline safety a priority. In this study, Fluent software was used to create a model for annular edge leakage flanges, which significantly differs from the traditional pinhole leakage model. This study aims to examine the impact of CO<sub>2</sub> pipeline flow and pressure on the diffusion of gas leaking from the flange and to develop a precise correlation between the diffusion distance and substance concentration. The results indicate that an increase in flow and pressure intensifies the diffusion of the flange leakage. Specifically, for a leakage lasting 96 s at flow rates of 0.7 and 10 m<sup>3</sup>/h, the diffusion ranges for the 5% concentration alarm threshold are 0.47 and 2.86 m, respectively. Furthermore, at a speed of 10 m/s and a pressure of 0.4 MPa, the diffusion ranges for 5 and 2% alarms are similar, spanning from 0.33 to 0.35 m. This study provides theoretical support and technical improvements to ensure the safe operation of pipelines. © 2024 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 5","pages":"728-742"},"PeriodicalIF":2.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141927437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CO2 solubility in aqueous solution of salts: Experimental study and thermodynamic modelling 二氧化碳在盐类水溶液中的溶解度:实验研究和热力学模型
IF 2.7 4区 环境科学与生态学
Greenhouse Gases: Science and Technology Pub Date : 2024-08-07 DOI: 10.1002/ghg.2298
Ramin Mousavi, Antonin Chapoy, Rod Burgass
{"title":"CO2 solubility in aqueous solution of salts: Experimental study and thermodynamic modelling","authors":"Ramin Mousavi,&nbsp;Antonin Chapoy,&nbsp;Rod Burgass","doi":"10.1002/ghg.2298","DOIUrl":"https://doi.org/10.1002/ghg.2298","url":null,"abstract":"<p>There are many economic obstacles and complex engineering problems associated with CO<sub>2</sub> capture and storage in saline aquifers that need to be addressed. Overcoming such challenges requires precise knowledge on the fluid phase equilibria of CO<sub>2-</sub>brine systems. Having accurate CO<sub>2</sub> solubility data over a wide range of temperature and pressure can greatly assist in resolving these obstacles by improving the performance and accuracy of the thermodynamic modeling and subsequent CCS engineering success.</p><p>CO<sub>2</sub> solubility in pure water and NaCl solutions has been widely studied in the literature, however, there is a lack of data on CO<sub>2</sub> solubility at lower temperatures (below 298 K). Furthermore, limited phase equilibria data are available for CO<sub>2</sub> solubility in CaCl<sub>2</sub>, MgCl<sub>2</sub>, and KCl solutions at elevated temperatures (i.e., <i>T</i> &gt; 323.15 K).</p><p>In this work, the phase equilibria of CO<sub>2</sub> and brine systems are investigated experimentally and theoretically. In this study, solubilities of CO<sub>2</sub> in pure water and various concentrations of NaCl (10, 15, 20, and 22 wt%), KCl (10, 15, and 22 wt%), CaCl<sub>2</sub> (7.5, 10, 15.7, and 23.4 wt%), and MgCl<sub>2</sub> (6.7, 11, 18, and 29 wt%) aqueous solutions are reported. All CO<sub>2</sub> solubilities were measures at 323.15, 373.15, and 423.15 K and over various pressure ranges, while solubilities in 10 and 20 wt% NaCl aqueous solutions were also measured over the temperature range of 263 to 298 K and pressures up to the hydrate dissociation pressure of each system. Equation of state modelling using the PC-SAFT and the Cubic Plus Association equations of state, is performed in the theoretical part of the study to validate the measured solubility data. © 2024 The Author(s). <i>Greenhouse Gases: Science and Technology</i> published by Society of Chemical Industry and John Wiley &amp; Sons Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 5","pages":"791-828"},"PeriodicalIF":2.7,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ghg.2298","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensitivity analysis of parameters on carbon dioxide desorption processes from aqueous monoethanolamine solution 单乙醇胺水溶液二氧化碳解吸过程参数敏感性分析
IF 2.7 4区 环境科学与生态学
Greenhouse Gases: Science and Technology Pub Date : 2024-08-06 DOI: 10.1002/ghg.2299
Armando Zanone, José Luis de Paiva
{"title":"Sensitivity analysis of parameters on carbon dioxide desorption processes from aqueous monoethanolamine solution","authors":"Armando Zanone,&nbsp;José Luis de Paiva","doi":"10.1002/ghg.2299","DOIUrl":"https://doi.org/10.1002/ghg.2299","url":null,"abstract":"<p>Carbon dioxide (CO<sub>2</sub>) capture technologies are crucial for mitigating climate change, with post-combustion capture (PCC) using chemical absorption being a leading method. However, the energy-intensive solvent regeneration process presents a significant challenge, consuming up to 50% of the total energy in carbon sequestration. Despite extensive research on absorption, desorption studies remain limited. This study focuses on the desorption analysis through experimental runs in a pilot-scale tray column with varying flow rates, validating an Aspen Plus model. The research compares the impact of the number of stages, feed stage position, column pressure, and reflux ratio between equilibrium and rate-based models. The findings reveal enhanced desorption efficiency through optimized operational conditions, including reduced flow rates, additional equilibrium stages, feeding stage positioning closer to the condenser, elevated pressures, and lower reflux ratios. © 2024 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 5","pages":"713-727"},"PeriodicalIF":2.7,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High efficient CuCeO2-δ/SiO2 catalyst for RWGS reaction: impact of Ce content and loading sequence 用于 RWGS 反应的高效 CuCeO2-δ/SiO2 催化剂:Ce 含量和负载顺序的影响
IF 2.7 4区 环境科学与生态学
Greenhouse Gases: Science and Technology Pub Date : 2024-07-16 DOI: 10.1002/ghg.2294
Shan Zhao, Le Yang, Shen Yao, Yahong Dai, Shuang Chen, Jia Zeng, Aiping Jia, Hongmei Xie, Guilin Zhou
{"title":"High efficient CuCeO2-δ/SiO2 catalyst for RWGS reaction: impact of Ce content and loading sequence","authors":"Shan Zhao,&nbsp;Le Yang,&nbsp;Shen Yao,&nbsp;Yahong Dai,&nbsp;Shuang Chen,&nbsp;Jia Zeng,&nbsp;Aiping Jia,&nbsp;Hongmei Xie,&nbsp;Guilin Zhou","doi":"10.1002/ghg.2294","DOIUrl":"10.1002/ghg.2294","url":null,"abstract":"<p>The extensive use of fossil energy leads to wanton emission of CO<sub>2</sub> and serious environmental problems. The exploration of high-performance catalysts plays a pivotal role in CO<sub>2</sub> resource utilization. In this paper, CuCe<sub>y</sub>K catalysts are prepared by wet impregnation method using ordered mesoporous SiO<sub>2</sub> as support for the reverse water gas shift (RWGS) reaction. The physicochemical properties of the prepared catalysts are characterized by H<sub>2</sub>-TPR, BET, XRD, Quasi <i>in-situ</i> XPS, H<sub>2</sub>-TPD, and CO<sub>2</sub>-TPD techniques. The results demonstrate thatthe Cu<sup>0</sup> species can form synergistic effects with oxygen vacancies (O<sub>v</sub>) to enhance the CuCe<sub>y</sub>K catalytic performance. Additionally, the electronic effects between Ce and Cu not only enhances the adsorption and activation performances of the catalyst towards CO<sub>2</sub> and H<sub>2</sub> molecules, but also effectively suppresses the sintering of Cu<sup>0</sup> species, thereby enhancing the stability of the corresponding catalyst. It is worth mentioning that the Ce content also directly affects the catalytic performances of the CuCe<sub>y</sub>K catalyst. The CuCe<sub>15</sub>K catalyst with a Ce content of 15% displays excellent CO<sub>2</sub> hydrogenation performances, and the CO<sub>2</sub> conversion and CO selectivity up to 41 % and 100 % at 420 °C, respectively. © 2024 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 4","pages":"636-658"},"PeriodicalIF":2.7,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141640416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of dimethyl carbonate production process from CO2 by rigorous simulation and detailed optimization 通过严格模拟和详细优化评估利用二氧化碳生产碳酸二甲酯的工艺
IF 2.7 4区 环境科学与生态学
Greenhouse Gases: Science and Technology Pub Date : 2024-07-08 DOI: 10.1002/ghg.2293
Zhe Sun, Heyu Li, Yan Cao
{"title":"Evaluation of dimethyl carbonate production process from CO2 by rigorous simulation and detailed optimization","authors":"Zhe Sun,&nbsp;Heyu Li,&nbsp;Yan Cao","doi":"10.1002/ghg.2293","DOIUrl":"10.1002/ghg.2293","url":null,"abstract":"<p>The CO<sub>2</sub>-derived dimethyl carbonate (DMC) synthesis process becomes greatly attentive but suffers high energy consumption in DMC distillation process. In this work, the DMC-MeOH azeotropes separation process by pressure swing distillation and extractive distillation was compared, and key operating parameters, including the total number of trays and the feeding position of the mixture liquid, were optimized with the minimum total annual cost (TAC) as the objective function. On the basis of this optimization, economic evaluation of different distillation processes was conducted, and it was found that extractive distillation was more economical than pressure swing distillation. The application of the dividing-wall distillation process upgraded by extractive distillation can significantly reduce the minimum annual total cost by 37.4% and 10.7% compared to the original pressure swing distillation and extractive distillation process, respectively. The optimization of relevant heat exchange network based on pinch technology resulted in energy consumption reduction by 27.2% and 25.9% for its hot and cold utilities, respectively. Carbon life cycle assessment (LCA) on the DMC distillation process revealed over 50% of energy as well as carbon emissions from steam consumption, whose reduction can significantly minimize CO<sub>2</sub> emissions, energy consumption, and ultimate cost. © 2024 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 4","pages":"620-635"},"PeriodicalIF":2.7,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141667274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive review of molecular dynamics simulation on the replacement characteristics and mechanism of CO2-CH4 hydrate in porous media systems 多孔介质系统中 CO2-CH4 水合物置换特性与机理的分子动力学模拟综述
IF 2.7 4区 环境科学与生态学
Greenhouse Gases: Science and Technology Pub Date : 2024-06-30 DOI: 10.1002/ghg.2292
Xuemin Zhang, Tingting Huang, Tao Shan, Qing Yuan, Jinping Li, Qingbai wu, Peng Zhang
{"title":"A comprehensive review of molecular dynamics simulation on the replacement characteristics and mechanism of CO2-CH4 hydrate in porous media systems","authors":"Xuemin Zhang,&nbsp;Tingting Huang,&nbsp;Tao Shan,&nbsp;Qing Yuan,&nbsp;Jinping Li,&nbsp;Qingbai wu,&nbsp;Peng Zhang","doi":"10.1002/ghg.2292","DOIUrl":"https://doi.org/10.1002/ghg.2292","url":null,"abstract":"<p>Natural gas hydrate (NGH), is a new green-sustainable energy source, and the process of recovering CH<sub>4</sub> from NGH by replacing CO<sub>2</sub> is regarded as an advantageous way to mine NGH. However, improving the replacement efficiency of CO<sub>2</sub>-CH<sub>4</sub> hydrate is a critical problem in the CO<sub>2</sub> replacement mining process. The feasibility study of the replacement for CO<sub>2</sub>-CH<sub>4</sub> hydrate, as well as the research status of the replacement characteristics for various situations, is examined in this review. Additionally, the microscopic mechanism of CO<sub>2</sub>-CH<sub>4</sub> hydrate replacement in porous media is explored in detail. The basic molecular dynamic (MD) simulation method and primary influencing factors of CO<sub>2</sub>-CH<sub>4</sub> hydrate replacement were summarized systematically. Finally, the shortcomings of MD simulation of CO<sub>2</sub>-CH<sub>4</sub> hydrate replacement process in porous medium system and the future development direction are pointed out. The relevant results will offer helpful direction for future NGH exploitation. © 2024 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 4","pages":"695-710"},"PeriodicalIF":2.7,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmental impact investigation of combined CCS and SCR on a ship by a case study 通过案例研究调查船舶上联合使用 CCS 和 SCR 对环境的影响
IF 2.7 4区 环境科学与生态学
Greenhouse Gases: Science and Technology Pub Date : 2024-06-20 DOI: 10.1002/ghg.2291
Bugra Arda Zincir, Burak Zincir, Cengiz Deniz, Hasan Bora Usluer, Yasin Arslanoglu
{"title":"Environmental impact investigation of combined CCS and SCR on a ship by a case study","authors":"Bugra Arda Zincir,&nbsp;Burak Zincir,&nbsp;Cengiz Deniz,&nbsp;Hasan Bora Usluer,&nbsp;Yasin Arslanoglu","doi":"10.1002/ghg.2291","DOIUrl":"https://doi.org/10.1002/ghg.2291","url":null,"abstract":"<p>The environmental and economic performance of a post-combustion solvent-based carbon capture system (CCS) combined with a selective catalytic reduction (SCR) system is investigated on a 48,600 kW engine container ship to meet the International Maritime Organization's emission reduction strategies through 2050. The proposed system uses aqueous ammonia to mitigate the produced CO<sub>2</sub> and NO<sub>X</sub> emissions onboard a ship. Moreover, the combined system is investigated through a voyage-based case study using an engine room simulator, assuming that CCS and SCR are implemented on the reference ship. During the case study, the referenced container ship sailed from Rotterdam to New York, and the estimations were made by using Netpas Distance 4.0 software program. Results indicate that a total of 3,606.04 ton-CO<sub>2</sub> and 92.40 ton-NO<sub>X</sub> are produced, while 3,345.43 ton-CO<sub>2</sub> and 40.67 ton-NO<sub>X</sub> are captured during the voyage. Furthermore, an economic analysis is carried out after the case study. Findings of the economic analysis are: CAPEX of CCS is $32.07 MM and SCR is $2.19 MM, while OPEX of CCS and SCR are $188,873 and $103,681, respectively. In addition, it was calculated that implementing CCS could avoid the CO<sub>2</sub> tax cost of $19,472, while the economic value of the CO<sub>2</sub> captured was $113,590. © 2024 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 4","pages":"607-619"},"PeriodicalIF":2.7,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 14, Issue 3 封面图片,第 14 卷第 3 期
IF 2.2 4区 环境科学与生态学
Greenhouse Gases: Science and Technology Pub Date : 2024-06-04 DOI: 10.1002/ghg.2290
{"title":"Cover Image, Volume 14, Issue 3","authors":"","doi":"10.1002/ghg.2290","DOIUrl":"https://doi.org/10.1002/ghg.2290","url":null,"abstract":"<p>The cover image is based on the Modeling and Analysis <i>Mechanistic analysis of acid gas storage and oil recovery in naturally fractured reservoirs using single matrix block approach</i> by Goran Shirzad et al., https://doi.org/10.1002/ghg.2276.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 3","pages":"i"},"PeriodicalIF":2.2,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ghg.2290","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141251288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A study on decompression wave propagation characteristics during CO2 pipeline leakage with consideration of gas-liquid transition 考虑气液转换的二氧化碳管道泄漏时减压波传播特性研究
IF 2.7 4区 环境科学与生态学
Greenhouse Gases: Science and Technology Pub Date : 2024-06-03 DOI: 10.1002/ghg.2283
Liu Bin, Li Kaixuan, Yu Zhipeng, Wang Zaizhou, Chen Wenjun
{"title":"A study on decompression wave propagation characteristics during CO2 pipeline leakage with consideration of gas-liquid transition","authors":"Liu Bin,&nbsp;Li Kaixuan,&nbsp;Yu Zhipeng,&nbsp;Wang Zaizhou,&nbsp;Chen Wenjun","doi":"10.1002/ghg.2283","DOIUrl":"10.1002/ghg.2283","url":null,"abstract":"<p>Pipelines stand as the most cost-effective method for large-scale transportation of CO<sub>2</sub> from a source point to the storage site, especially over extensive distances. The potential for crack propagation following a pipeline rupture highlights the need for precise analysis of decompression wave propagation. To accurately model this, understanding the decompression wave's propagation laws becomes imperative. Although previous studies have predominantly focused on pipeline leaks within the dense phase or supercritical state, the transition from liquid to gas during leakage significantly affects the decompression wave propagation. When a gaseous CO<sub>2</sub> pipeline ruptures, the high Joule-–Thomson coefficient causes a swift temperature plunge, potentially leading to a gas–liquid transition. However, research on how this phase transition impacts the decompression wave characteristics is limited. To address this gap, this study proposes a transition computational fluid dynamics model to predict the decompression wave behavior. The model is validated with an industrial-scale full-bore rupture experiment. The results reveal that the gaseous CO<sub>2</sub> leakage induces a pressure plateau at a certain distance from the leakage due to the gas-liquid phase transition. The influences of initial conditions on this pressure plateau and decompression wave are also explored. This study provides valuable insights into understanding the decompression wave behaviors of gaseous CO<sub>2</sub> pipelines, which are essential for ensuring the safety and reliability of CO<sub>2</sub> transportation within the carbon capture and storage technology chain. © 2024 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 4","pages":"575-586"},"PeriodicalIF":2.7,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141269226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信