Bugra Arda Zincir, Burak Zincir, Cengiz Deniz, Hasan Bora Usluer, Yasin Arslanoglu
求助PDF
{"title":"Environmental impact investigation of combined CCS and SCR on a ship by a case study","authors":"Bugra Arda Zincir, Burak Zincir, Cengiz Deniz, Hasan Bora Usluer, Yasin Arslanoglu","doi":"10.1002/ghg.2291","DOIUrl":null,"url":null,"abstract":"<p>The environmental and economic performance of a post-combustion solvent-based carbon capture system (CCS) combined with a selective catalytic reduction (SCR) system is investigated on a 48,600 kW engine container ship to meet the International Maritime Organization's emission reduction strategies through 2050. The proposed system uses aqueous ammonia to mitigate the produced CO<sub>2</sub> and NO<sub>X</sub> emissions onboard a ship. Moreover, the combined system is investigated through a voyage-based case study using an engine room simulator, assuming that CCS and SCR are implemented on the reference ship. During the case study, the referenced container ship sailed from Rotterdam to New York, and the estimations were made by using Netpas Distance 4.0 software program. Results indicate that a total of 3,606.04 ton-CO<sub>2</sub> and 92.40 ton-NO<sub>X</sub> are produced, while 3,345.43 ton-CO<sub>2</sub> and 40.67 ton-NO<sub>X</sub> are captured during the voyage. Furthermore, an economic analysis is carried out after the case study. Findings of the economic analysis are: CAPEX of CCS is $32.07 MM and SCR is $2.19 MM, while OPEX of CCS and SCR are $188,873 and $103,681, respectively. In addition, it was calculated that implementing CCS could avoid the CO<sub>2</sub> tax cost of $19,472, while the economic value of the CO<sub>2</sub> captured was $113,590. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 4","pages":"607-619"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Greenhouse Gases: Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ghg.2291","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
The environmental and economic performance of a post-combustion solvent-based carbon capture system (CCS) combined with a selective catalytic reduction (SCR) system is investigated on a 48,600 kW engine container ship to meet the International Maritime Organization's emission reduction strategies through 2050. The proposed system uses aqueous ammonia to mitigate the produced CO2 and NOX emissions onboard a ship. Moreover, the combined system is investigated through a voyage-based case study using an engine room simulator, assuming that CCS and SCR are implemented on the reference ship. During the case study, the referenced container ship sailed from Rotterdam to New York, and the estimations were made by using Netpas Distance 4.0 software program. Results indicate that a total of 3,606.04 ton-CO2 and 92.40 ton-NOX are produced, while 3,345.43 ton-CO2 and 40.67 ton-NOX are captured during the voyage. Furthermore, an economic analysis is carried out after the case study. Findings of the economic analysis are: CAPEX of CCS is $32.07 MM and SCR is $2.19 MM, while OPEX of CCS and SCR are $188,873 and $103,681, respectively. In addition, it was calculated that implementing CCS could avoid the CO2 tax cost of $19,472, while the economic value of the CO2 captured was $113,590. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.
通过案例研究调查船舶上联合使用 CCS 和 SCR 对环境的影响
为了满足国际海事组织到 2050 年的减排战略,我们在一艘 48,600 千瓦发动机的集装箱船上研究了燃烧后溶剂型碳捕集系统 (CCS) 与选择性催化还原 (SCR) 系统相结合的环境和经济性能。所提议的系统使用氨水来减少船上产生的二氧化碳和氮氧化物排放。此外,通过使用机房模拟器进行基于航程的案例研究,假定在参考船上实施 CCS 和 SCR,对组合系统进行了研究。在案例研究期间,参考的集装箱船从鹿特丹驶往纽约,并使用 Netpas Distance 4.0 软件程序进行了估算。结果表明,航行期间共产生 3,606.04 吨二氧化碳和 92.40 吨氮氧化物,同时捕获 3,345.43 吨二氧化碳和 40.67 吨氮氧化物。此外,在案例研究之后还进行了经济分析。经济分析结果如下CCS 的 CAPEX 为 3207 万美元,SCR 为 219 万美元,而 CCS 和 SCR 的 OPEX 分别为 188873 美元和 103681 美元。此外,根据计算,实施 CCS 可避免 19,472 美元的二氧化碳税成本,而捕获的二氧化碳的经济价值为 113,590 美元。© 2024 化学工业协会和约翰威利父子有限公司版权所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。